ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x-4y=1,2x+y=16
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x-4y=1
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=4y+1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 4y نى قوشۇڭ.
2\left(4y+1\right)+y=16
يەنە بىر تەڭلىمە 2x+y=16 دىكى x نىڭ ئورنىغا 4y+1 نى ئالماشتۇرۇڭ.
8y+2+y=16
2 نى 4y+1 كە كۆپەيتىڭ.
9y+2=16
8y نى y گە قوشۇڭ.
9y=14
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2 نى ئېلىڭ.
y=\frac{14}{9}
ھەر ئىككى تەرەپنى 9 گە بۆلۈڭ.
x=4\times \frac{14}{9}+1
x=4y+1 دە \frac{14}{9} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{56}{9}+1
4 نى \frac{14}{9} كە كۆپەيتىڭ.
x=\frac{65}{9}
1 نى \frac{56}{9} گە قوشۇڭ.
x=\frac{65}{9},y=\frac{14}{9}
سىستېما ھەل قىلىندى.
x-4y=1,2x+y=16
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&-4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\16\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}1&-4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}1\\16\end{matrix}\right)
\left(\begin{matrix}1&-4\\2&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}1\\16\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}1\\16\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-4\times 2\right)}&-\frac{-4}{1-\left(-4\times 2\right)}\\-\frac{2}{1-\left(-4\times 2\right)}&\frac{1}{1-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}1\\16\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{4}{9}\\-\frac{2}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}1\\16\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}+\frac{4}{9}\times 16\\-\frac{2}{9}+\frac{1}{9}\times 16\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{65}{9}\\\frac{14}{9}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{65}{9},y=\frac{14}{9}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x-4y=1,2x+y=16
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2x+2\left(-4\right)y=2,2x+y=16
x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 1 گە كۆپەيتىڭ.
2x-8y=2,2x+y=16
ئاددىيلاشتۇرۇڭ.
2x-2x-8y-y=2-16
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 2x-8y=2 دىن 2x+y=16 نى ئېلىڭ.
-8y-y=2-16
2x نى -2x گە قوشۇڭ. 2x بىلەن -2x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-9y=2-16
-8y نى -y گە قوشۇڭ.
-9y=-14
2 نى -16 گە قوشۇڭ.
y=\frac{14}{9}
ھەر ئىككى تەرەپنى -9 گە بۆلۈڭ.
2x+\frac{14}{9}=16
2x+y=16 دە \frac{14}{9} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x=\frac{130}{9}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{14}{9} نى ئېلىڭ.
x=\frac{65}{9}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=\frac{65}{9},y=\frac{14}{9}
سىستېما ھەل قىلىندى.