ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x-2y=1
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 2y نى ئېلىڭ.
x-3y=-4
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 3y نى ئېلىڭ.
x-2y=1,x-3y=-4
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x-2y=1
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=2y+1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2y نى قوشۇڭ.
2y+1-3y=-4
يەنە بىر تەڭلىمە x-3y=-4 دىكى x نىڭ ئورنىغا 2y+1 نى ئالماشتۇرۇڭ.
-y+1=-4
2y نى -3y گە قوشۇڭ.
-y=-5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1 نى ئېلىڭ.
y=5
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
x=2\times 5+1
x=2y+1 دە 5 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=10+1
2 نى 5 كە كۆپەيتىڭ.
x=11
1 نى 10 گە قوشۇڭ.
x=11,y=5
سىستېما ھەل قىلىندى.
x-2y=1
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 2y نى ئېلىڭ.
x-3y=-4
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 3y نى ئېلىڭ.
x-2y=1,x-3y=-4
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&-2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&-2\\1&-3\end{matrix}\right))\left(\begin{matrix}1&-2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
\left(\begin{matrix}1&-2\\1&-3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-\left(-2\right)}&-\frac{-2}{-3-\left(-2\right)}\\-\frac{1}{-3-\left(-2\right)}&\frac{1}{-3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3-2\left(-4\right)\\1-\left(-4\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\5\end{matrix}\right)
ھېسابلاڭ.
x=11,y=5
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x-2y=1
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 2y نى ئېلىڭ.
x-3y=-4
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 3y نى ئېلىڭ.
x-2y=1,x-3y=-4
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
x-x-2y+3y=1+4
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق x-2y=1 دىن x-3y=-4 نى ئېلىڭ.
-2y+3y=1+4
x نى -x گە قوشۇڭ. x بىلەن -x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
y=1+4
-2y نى 3y گە قوشۇڭ.
y=5
1 نى 4 گە قوشۇڭ.
x-3\times 5=-4
x-3y=-4 دە 5 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x-15=-4
-3 نى 5 كە كۆپەيتىڭ.
x=11
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 15 نى قوشۇڭ.
x=11,y=5
سىستېما ھەل قىلىندى.