ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x+5y=5,3x-2y=3
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x+5y=5
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=-5y+5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 5y نى ئېلىڭ.
3\left(-5y+5\right)-2y=3
يەنە بىر تەڭلىمە 3x-2y=3 دىكى x نىڭ ئورنىغا -5y+5 نى ئالماشتۇرۇڭ.
-15y+15-2y=3
3 نى -5y+5 كە كۆپەيتىڭ.
-17y+15=3
-15y نى -2y گە قوشۇڭ.
-17y=-12
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 15 نى ئېلىڭ.
y=\frac{12}{17}
ھەر ئىككى تەرەپنى -17 گە بۆلۈڭ.
x=-5\times \frac{12}{17}+5
x=-5y+5 دە \frac{12}{17} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{60}{17}+5
-5 نى \frac{12}{17} كە كۆپەيتىڭ.
x=\frac{25}{17}
5 نى -\frac{60}{17} گە قوشۇڭ.
x=\frac{25}{17},y=\frac{12}{17}
سىستېما ھەل قىلىندى.
x+5y=5,3x-2y=3
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}1&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
\left(\begin{matrix}1&5\\3&-2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-5\times 3}&-\frac{5}{-2-5\times 3}\\-\frac{3}{-2-5\times 3}&\frac{1}{-2-5\times 3}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}&\frac{5}{17}\\\frac{3}{17}&-\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}\times 5+\frac{5}{17}\times 3\\\frac{3}{17}\times 5-\frac{1}{17}\times 3\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{17}\\\frac{12}{17}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{25}{17},y=\frac{12}{17}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x+5y=5,3x-2y=3
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3x+3\times 5y=3\times 5,3x-2y=3
x بىلەن 3x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 1 گە كۆپەيتىڭ.
3x+15y=15,3x-2y=3
ئاددىيلاشتۇرۇڭ.
3x-3x+15y+2y=15-3
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 3x+15y=15 دىن 3x-2y=3 نى ئېلىڭ.
15y+2y=15-3
3x نى -3x گە قوشۇڭ. 3x بىلەن -3x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
17y=15-3
15y نى 2y گە قوشۇڭ.
17y=12
15 نى -3 گە قوشۇڭ.
y=\frac{12}{17}
ھەر ئىككى تەرەپنى 17 گە بۆلۈڭ.
3x-2\times \frac{12}{17}=3
3x-2y=3 دە \frac{12}{17} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
3x-\frac{24}{17}=3
-2 نى \frac{12}{17} كە كۆپەيتىڭ.
3x=\frac{75}{17}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{24}{17} نى قوشۇڭ.
x=\frac{25}{17}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{25}{17},y=\frac{12}{17}
سىستېما ھەل قىلىندى.