\left\{ \begin{array} { l } { x + 4 y = 7 } \\ { 2 x - 7 y = - 31 } \end{array} \right.
x، y نى يېشىش
x=-5
y=3
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x+4y=7,2x-7y=-31
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x+4y=7
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=-4y+7
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4y نى ئېلىڭ.
2\left(-4y+7\right)-7y=-31
يەنە بىر تەڭلىمە 2x-7y=-31 دىكى x نىڭ ئورنىغا -4y+7 نى ئالماشتۇرۇڭ.
-8y+14-7y=-31
2 نى -4y+7 كە كۆپەيتىڭ.
-15y+14=-31
-8y نى -7y گە قوشۇڭ.
-15y=-45
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 14 نى ئېلىڭ.
y=3
ھەر ئىككى تەرەپنى -15 گە بۆلۈڭ.
x=-4\times 3+7
x=-4y+7 دە 3 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-12+7
-4 نى 3 كە كۆپەيتىڭ.
x=-5
7 نى -12 گە قوشۇڭ.
x=-5,y=3
سىستېما ھەل قىلىندى.
x+4y=7,2x-7y=-31
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&4\\2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-31\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&4\\2&-7\end{matrix}\right))\left(\begin{matrix}1&4\\2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-7\end{matrix}\right))\left(\begin{matrix}7\\-31\end{matrix}\right)
\left(\begin{matrix}1&4\\2&-7\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-7\end{matrix}\right))\left(\begin{matrix}7\\-31\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-7\end{matrix}\right))\left(\begin{matrix}7\\-31\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-4\times 2}&-\frac{4}{-7-4\times 2}\\-\frac{2}{-7-4\times 2}&\frac{1}{-7-4\times 2}\end{matrix}\right)\left(\begin{matrix}7\\-31\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{15}&\frac{4}{15}\\\frac{2}{15}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}7\\-31\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{15}\times 7+\frac{4}{15}\left(-31\right)\\\frac{2}{15}\times 7-\frac{1}{15}\left(-31\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\3\end{matrix}\right)
ھېسابلاڭ.
x=-5,y=3
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x+4y=7,2x-7y=-31
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2x+2\times 4y=2\times 7,2x-7y=-31
x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 1 گە كۆپەيتىڭ.
2x+8y=14,2x-7y=-31
ئاددىيلاشتۇرۇڭ.
2x-2x+8y+7y=14+31
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 2x+8y=14 دىن 2x-7y=-31 نى ئېلىڭ.
8y+7y=14+31
2x نى -2x گە قوشۇڭ. 2x بىلەن -2x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
15y=14+31
8y نى 7y گە قوشۇڭ.
15y=45
14 نى 31 گە قوشۇڭ.
y=3
ھەر ئىككى تەرەپنى 15 گە بۆلۈڭ.
2x-7\times 3=-31
2x-7y=-31 دە 3 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x-21=-31
-7 نى 3 كە كۆپەيتىڭ.
2x=-10
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 21 نى قوشۇڭ.
x=-5
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=-5,y=3
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}