\left\{ \begin{array} { l } { x + 2 y = 2 m } \\ { 3 x + 5 y = m - 1 } \end{array} \right.
x، y نى يېشىش
x=-8m-2
y=5m+1
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x+2y=2m,3x+5y=m-1
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x+2y=2m
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=-2y+2m
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2y نى ئېلىڭ.
3\left(-2y+2m\right)+5y=m-1
يەنە بىر تەڭلىمە 3x+5y=m-1 دىكى x نىڭ ئورنىغا -2y+2m نى ئالماشتۇرۇڭ.
-6y+6m+5y=m-1
3 نى -2y+2m كە كۆپەيتىڭ.
-y+6m=m-1
-6y نى 5y گە قوشۇڭ.
-y=-5m-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 6m نى ئېلىڭ.
y=5m+1
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
x=-2\left(5m+1\right)+2m
x=-2y+2m دە 5m+1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-10m-2+2m
-2 نى 5m+1 كە كۆپەيتىڭ.
x=-8m-2
2m نى -10m-2 گە قوشۇڭ.
x=-8m-2,y=5m+1
سىستېما ھەل قىلىندى.
x+2y=2m,3x+5y=m-1
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2m\\m-1\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}1&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}2m\\m-1\end{matrix}\right)
\left(\begin{matrix}1&2\\3&5\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}2m\\m-1\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}2m\\m-1\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-2\times 3}&-\frac{2}{5-2\times 3}\\-\frac{3}{5-2\times 3}&\frac{1}{5-2\times 3}\end{matrix}\right)\left(\begin{matrix}2m\\m-1\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5&2\\3&-1\end{matrix}\right)\left(\begin{matrix}2m\\m-1\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\times 2m+2\left(m-1\right)\\3\times 2m-\left(m-1\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8m-2\\5m+1\end{matrix}\right)
ھېسابلاڭ.
x=-8m-2,y=5m+1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x+2y=2m,3x+5y=m-1
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3x+3\times 2y=3\times 2m,3x+5y=m-1
x بىلەن 3x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 1 گە كۆپەيتىڭ.
3x+6y=6m,3x+5y=m-1
ئاددىيلاشتۇرۇڭ.
3x-3x+6y-5y=6m+1-m
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 3x+6y=6m دىن 3x+5y=m-1 نى ئېلىڭ.
6y-5y=6m+1-m
3x نى -3x گە قوشۇڭ. 3x بىلەن -3x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
y=6m+1-m
6y نى -5y گە قوشۇڭ.
y=5m+1
6m نى -m+1 گە قوشۇڭ.
3x+5\left(5m+1\right)=m-1
3x+5y=m-1 دە 1+5m نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
3x+25m+5=m-1
5 نى 1+5m كە كۆپەيتىڭ.
3x=-24m-6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 5+25m نى ئېلىڭ.
x=-8m-2
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=-8m-2,y=5m+1
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}