\left\{ \begin{array} { l } { x + 2 y = 2 } \\ { x - 3 y = - 5 } \end{array} \right.
x، y نى يېشىش
x=-\frac{4}{5}=-0.8
y = \frac{7}{5} = 1\frac{2}{5} = 1.4
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x+2y=2,x-3y=-5
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x+2y=2
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=-2y+2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2y نى ئېلىڭ.
-2y+2-3y=-5
يەنە بىر تەڭلىمە x-3y=-5 دىكى x نىڭ ئورنىغا -2y+2 نى ئالماشتۇرۇڭ.
-5y+2=-5
-2y نى -3y گە قوشۇڭ.
-5y=-7
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2 نى ئېلىڭ.
y=\frac{7}{5}
ھەر ئىككى تەرەپنى -5 گە بۆلۈڭ.
x=-2\times \frac{7}{5}+2
x=-2y+2 دە \frac{7}{5} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{14}{5}+2
-2 نى \frac{7}{5} كە كۆپەيتىڭ.
x=-\frac{4}{5}
2 نى -\frac{14}{5} گە قوشۇڭ.
x=-\frac{4}{5},y=\frac{7}{5}
سىستېما ھەل قىلىندى.
x+2y=2,x-3y=-5
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-5\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
\left(\begin{matrix}1&2\\1&-3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2}&-\frac{2}{-3-2}\\-\frac{1}{-3-2}&\frac{1}{-3-2}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكس ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭلاشقا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى قىلىپ قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 2+\frac{2}{5}\left(-5\right)\\\frac{1}{5}\times 2-\frac{1}{5}\left(-5\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5}\\\frac{7}{5}\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{4}{5},y=\frac{7}{5}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x+2y=2,x-3y=-5
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
x-x+2y+3y=2+5
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق x+2y=2 دىن x-3y=-5 نى ئېلىڭ.
2y+3y=2+5
x نى -x گە قوشۇڭ. x بىلەن -x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
5y=2+5
2y نى 3y گە قوشۇڭ.
5y=7
2 نى 5 گە قوشۇڭ.
y=\frac{7}{5}
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x-3\times \frac{7}{5}=-5
x-3y=-5 دە \frac{7}{5} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x-\frac{21}{5}=-5
-3 نى \frac{7}{5} كە كۆپەيتىڭ.
x=-\frac{4}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{21}{5} نى قوشۇڭ.
x=-\frac{4}{5},y=\frac{7}{5}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}