\left\{ \begin{array} { l } { x + 1 - 2 y = 0 } \\ { y + z - 2 = 0 } \\ { 2 x + y - z - 6 = 0 } \end{array} \right.
x، y، z نى يېشىش
x = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
y = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
z=\frac{1}{3}\approx 0.333333333
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x=-1+2y
x+1-2y=0 دىكى x نى تېپىڭ.
2\left(-1+2y\right)+y-z-6=0
تەڭلىمە 2x+y-z-6=0 دىكى -1+2y نى x گە ئالماشتۇرۇڭ.
y=-z+2 z=-8+5y
ئىككىنچى تەڭلىمىدىكى y ۋە ئۈچىنچى تەڭلىمىدىكى z نى يېشىڭ.
z=-8+5\left(-z+2\right)
تەڭلىمە z=-8+5y دىكى -z+2 نى y گە ئالماشتۇرۇڭ.
z=\frac{1}{3}
z=-8+5\left(-z+2\right) دىكى z نى تېپىڭ.
y=-\frac{1}{3}+2
تەڭلىمە y=-z+2 دىكى \frac{1}{3} نى z گە ئالماشتۇرۇڭ.
y=\frac{5}{3}
y=-\frac{1}{3}+2 دىكى y نى ھېسابلاڭ.
x=-1+2\times \frac{5}{3}
تەڭلىمە x=-1+2y دىكى \frac{5}{3} نى y گە ئالماشتۇرۇڭ.
x=\frac{7}{3}
x=-1+2\times \frac{5}{3} دىكى x نى ھېسابلاڭ.
x=\frac{7}{3} y=\frac{5}{3} z=\frac{1}{3}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}