\left\{ \begin{array} { l } { a x - y = 3 } \\ { ( a - 4 ) x + \sqrt { 2 } = 4 } \end{array} \right.
x، y نى يېشىش
x=-\frac{\sqrt{2}-4}{a-4}
y=\frac{-\sqrt{2}a+a+12}{a-4}
a\neq 4
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\left(a-4\right)x+\sqrt{2}=4,ax-y=3
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
\left(a-4\right)x+\sqrt{2}=4
ئىككى تەڭلىمىدىن يېشىش ئاسان بولغىنىنى تاللاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇپ، x نىڭ قىممىتىنى تېپىپ يېشىڭ.
\left(a-4\right)x=4-\sqrt{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \sqrt{2} نى ئېلىڭ.
x=\frac{4-\sqrt{2}}{a-4}
ھەر ئىككى تەرەپنى a-4 گە بۆلۈڭ.
a\times \frac{4-\sqrt{2}}{a-4}-y=3
يەنە بىر تەڭلىمە ax-y=3 دىكى x نىڭ ئورنىغا \frac{4-\sqrt{2}}{a-4} نى ئالماشتۇرۇڭ.
\frac{\left(4-\sqrt{2}\right)a}{a-4}-y=3
a نى \frac{4-\sqrt{2}}{a-4} كە كۆپەيتىڭ.
-y=\frac{\sqrt{2}a-a-12}{a-4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{a\left(4-\sqrt{2}\right)}{a-4} نى ئېلىڭ.
y=-\frac{\sqrt{2}a-a-12}{a-4}
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
x=\frac{4-\sqrt{2}}{a-4},y=-\frac{\sqrt{2}a-a-12}{a-4}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}