\left\{ \begin{array} { l } { 9 x + 2 y = 62 } \\ { 4 x + 3 y = 36 } \end{array} \right.
x، y نى يېشىش
x=6
y=4
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
9x+2y=62,4x+3y=36
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
9x+2y=62
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
9x=-2y+62
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2y نى ئېلىڭ.
x=\frac{1}{9}\left(-2y+62\right)
ھەر ئىككى تەرەپنى 9 گە بۆلۈڭ.
x=-\frac{2}{9}y+\frac{62}{9}
\frac{1}{9} نى -2y+62 كە كۆپەيتىڭ.
4\left(-\frac{2}{9}y+\frac{62}{9}\right)+3y=36
يەنە بىر تەڭلىمە 4x+3y=36 دىكى x نىڭ ئورنىغا \frac{-2y+62}{9} نى ئالماشتۇرۇڭ.
-\frac{8}{9}y+\frac{248}{9}+3y=36
4 نى \frac{-2y+62}{9} كە كۆپەيتىڭ.
\frac{19}{9}y+\frac{248}{9}=36
-\frac{8y}{9} نى 3y گە قوشۇڭ.
\frac{19}{9}y=\frac{76}{9}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{248}{9} نى ئېلىڭ.
y=4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{19}{9} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{2}{9}\times 4+\frac{62}{9}
x=-\frac{2}{9}y+\frac{62}{9} دە 4 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-8+62}{9}
-\frac{2}{9} نى 4 كە كۆپەيتىڭ.
x=6
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{62}{9} نى -\frac{8}{9} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=6,y=4
سىستېما ھەل قىلىندى.
9x+2y=62,4x+3y=36
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}9&2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}62\\36\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}9&2\\4&3\end{matrix}\right))\left(\begin{matrix}9&2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&2\\4&3\end{matrix}\right))\left(\begin{matrix}62\\36\end{matrix}\right)
\left(\begin{matrix}9&2\\4&3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&2\\4&3\end{matrix}\right))\left(\begin{matrix}62\\36\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&2\\4&3\end{matrix}\right))\left(\begin{matrix}62\\36\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{9\times 3-2\times 4}&-\frac{2}{9\times 3-2\times 4}\\-\frac{4}{9\times 3-2\times 4}&\frac{9}{9\times 3-2\times 4}\end{matrix}\right)\left(\begin{matrix}62\\36\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}&-\frac{2}{19}\\-\frac{4}{19}&\frac{9}{19}\end{matrix}\right)\left(\begin{matrix}62\\36\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}\times 62-\frac{2}{19}\times 36\\-\frac{4}{19}\times 62+\frac{9}{19}\times 36\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\4\end{matrix}\right)
ھېسابلاڭ.
x=6,y=4
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
9x+2y=62,4x+3y=36
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
4\times 9x+4\times 2y=4\times 62,9\times 4x+9\times 3y=9\times 36
9x بىلەن 4x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 4 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 9 گە كۆپەيتىڭ.
36x+8y=248,36x+27y=324
ئاددىيلاشتۇرۇڭ.
36x-36x+8y-27y=248-324
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 36x+8y=248 دىن 36x+27y=324 نى ئېلىڭ.
8y-27y=248-324
36x نى -36x گە قوشۇڭ. 36x بىلەن -36x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-19y=248-324
8y نى -27y گە قوشۇڭ.
-19y=-76
248 نى -324 گە قوشۇڭ.
y=4
ھەر ئىككى تەرەپنى -19 گە بۆلۈڭ.
4x+3\times 4=36
4x+3y=36 دە 4 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
4x+12=36
3 نى 4 كە كۆپەيتىڭ.
4x=24
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 12 نى ئېلىڭ.
x=6
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=6,y=4
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}