ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

8x-4y=2,2x+3y=6
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
8x-4y=2
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
8x=4y+2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 4y نى قوشۇڭ.
x=\frac{1}{8}\left(4y+2\right)
ھەر ئىككى تەرەپنى 8 گە بۆلۈڭ.
x=\frac{1}{2}y+\frac{1}{4}
\frac{1}{8} نى 4y+2 كە كۆپەيتىڭ.
2\left(\frac{1}{2}y+\frac{1}{4}\right)+3y=6
يەنە بىر تەڭلىمە 2x+3y=6 دىكى x نىڭ ئورنىغا \frac{y}{2}+\frac{1}{4} نى ئالماشتۇرۇڭ.
y+\frac{1}{2}+3y=6
2 نى \frac{y}{2}+\frac{1}{4} كە كۆپەيتىڭ.
4y+\frac{1}{2}=6
y نى 3y گە قوشۇڭ.
4y=\frac{11}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{2} نى ئېلىڭ.
y=\frac{11}{8}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=\frac{1}{2}\times \frac{11}{8}+\frac{1}{4}
x=\frac{1}{2}y+\frac{1}{4} دە \frac{11}{8} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{11}{16}+\frac{1}{4}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{1}{2} نى \frac{11}{8} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{15}{16}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{4} نى \frac{11}{16} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{15}{16},y=\frac{11}{8}
سىستېما ھەل قىلىندى.
8x-4y=2,2x+3y=6
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}8&-4\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\6\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}8&-4\\2&3\end{matrix}\right))\left(\begin{matrix}8&-4\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-4\\2&3\end{matrix}\right))\left(\begin{matrix}2\\6\end{matrix}\right)
\left(\begin{matrix}8&-4\\2&3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-4\\2&3\end{matrix}\right))\left(\begin{matrix}2\\6\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-4\\2&3\end{matrix}\right))\left(\begin{matrix}2\\6\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-\left(-4\times 2\right)}&-\frac{-4}{8\times 3-\left(-4\times 2\right)}\\-\frac{2}{8\times 3-\left(-4\times 2\right)}&\frac{8}{8\times 3-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}2\\6\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{32}&\frac{1}{8}\\-\frac{1}{16}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}2\\6\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{32}\times 2+\frac{1}{8}\times 6\\-\frac{1}{16}\times 2+\frac{1}{4}\times 6\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{16}\\\frac{11}{8}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{15}{16},y=\frac{11}{8}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
8x-4y=2,2x+3y=6
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2\times 8x+2\left(-4\right)y=2\times 2,8\times 2x+8\times 3y=8\times 6
8x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 8 گە كۆپەيتىڭ.
16x-8y=4,16x+24y=48
ئاددىيلاشتۇرۇڭ.
16x-16x-8y-24y=4-48
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 16x-8y=4 دىن 16x+24y=48 نى ئېلىڭ.
-8y-24y=4-48
16x نى -16x گە قوشۇڭ. 16x بىلەن -16x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-32y=4-48
-8y نى -24y گە قوشۇڭ.
-32y=-44
4 نى -48 گە قوشۇڭ.
y=\frac{11}{8}
ھەر ئىككى تەرەپنى -32 گە بۆلۈڭ.
2x+3\times \frac{11}{8}=6
2x+3y=6 دە \frac{11}{8} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x+\frac{33}{8}=6
3 نى \frac{11}{8} كە كۆپەيتىڭ.
2x=\frac{15}{8}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{33}{8} نى ئېلىڭ.
x=\frac{15}{16}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=\frac{15}{16},y=\frac{11}{8}
سىستېما ھەل قىلىندى.