ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

8x+3y=25,2x+3y=13
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
8x+3y=25
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
8x=-3y+25
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3y نى ئېلىڭ.
x=\frac{1}{8}\left(-3y+25\right)
ھەر ئىككى تەرەپنى 8 گە بۆلۈڭ.
x=-\frac{3}{8}y+\frac{25}{8}
\frac{1}{8} نى -3y+25 كە كۆپەيتىڭ.
2\left(-\frac{3}{8}y+\frac{25}{8}\right)+3y=13
يەنە بىر تەڭلىمە 2x+3y=13 دىكى x نىڭ ئورنىغا \frac{-3y+25}{8} نى ئالماشتۇرۇڭ.
-\frac{3}{4}y+\frac{25}{4}+3y=13
2 نى \frac{-3y+25}{8} كە كۆپەيتىڭ.
\frac{9}{4}y+\frac{25}{4}=13
-\frac{3y}{4} نى 3y گە قوشۇڭ.
\frac{9}{4}y=\frac{27}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{25}{4} نى ئېلىڭ.
y=3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{9}{4} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{3}{8}\times 3+\frac{25}{8}
x=-\frac{3}{8}y+\frac{25}{8} دە 3 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-9+25}{8}
-\frac{3}{8} نى 3 كە كۆپەيتىڭ.
x=2
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{25}{8} نى -\frac{9}{8} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=2,y=3
سىستېما ھەل قىلىندى.
8x+3y=25,2x+3y=13
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}8&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\13\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}8&3\\2&3\end{matrix}\right))\left(\begin{matrix}8&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&3\\2&3\end{matrix}\right))\left(\begin{matrix}25\\13\end{matrix}\right)
\left(\begin{matrix}8&3\\2&3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&3\\2&3\end{matrix}\right))\left(\begin{matrix}25\\13\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&3\\2&3\end{matrix}\right))\left(\begin{matrix}25\\13\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-3\times 2}&-\frac{3}{8\times 3-3\times 2}\\-\frac{2}{8\times 3-3\times 2}&\frac{8}{8\times 3-3\times 2}\end{matrix}\right)\left(\begin{matrix}25\\13\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{6}\\-\frac{1}{9}&\frac{4}{9}\end{matrix}\right)\left(\begin{matrix}25\\13\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 25-\frac{1}{6}\times 13\\-\frac{1}{9}\times 25+\frac{4}{9}\times 13\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
ھېسابلاڭ.
x=2,y=3
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
8x+3y=25,2x+3y=13
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
8x-2x+3y-3y=25-13
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 8x+3y=25 دىن 2x+3y=13 نى ئېلىڭ.
8x-2x=25-13
3y نى -3y گە قوشۇڭ. 3y بىلەن -3y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
6x=25-13
8x نى -2x گە قوشۇڭ.
6x=12
25 نى -13 گە قوشۇڭ.
x=2
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
2\times 2+3y=13
2x+3y=13 دە 2 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
4+3y=13
2 نى 2 كە كۆپەيتىڭ.
3y=9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4 نى ئېلىڭ.
y=3
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=2,y=3
سىستېما ھەل قىلىندى.