ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

7x-8y=9,4x-13y=-10
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
7x-8y=9
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
7x=8y+9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 8y نى قوشۇڭ.
x=\frac{1}{7}\left(8y+9\right)
ھەر ئىككى تەرەپنى 7 گە بۆلۈڭ.
x=\frac{8}{7}y+\frac{9}{7}
\frac{1}{7} نى 8y+9 كە كۆپەيتىڭ.
4\left(\frac{8}{7}y+\frac{9}{7}\right)-13y=-10
يەنە بىر تەڭلىمە 4x-13y=-10 دىكى x نىڭ ئورنىغا \frac{8y+9}{7} نى ئالماشتۇرۇڭ.
\frac{32}{7}y+\frac{36}{7}-13y=-10
4 نى \frac{8y+9}{7} كە كۆپەيتىڭ.
-\frac{59}{7}y+\frac{36}{7}=-10
\frac{32y}{7} نى -13y گە قوشۇڭ.
-\frac{59}{7}y=-\frac{106}{7}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{36}{7} نى ئېلىڭ.
y=\frac{106}{59}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{59}{7} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{8}{7}\times \frac{106}{59}+\frac{9}{7}
x=\frac{8}{7}y+\frac{9}{7} دە \frac{106}{59} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{848}{413}+\frac{9}{7}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{8}{7} نى \frac{106}{59} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{197}{59}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{9}{7} نى \frac{848}{413} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{197}{59},y=\frac{106}{59}
سىستېما ھەل قىلىندى.
7x-8y=9,4x-13y=-10
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-10\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{7\left(-13\right)-\left(-8\times 4\right)}&-\frac{-8}{7\left(-13\right)-\left(-8\times 4\right)}\\-\frac{4}{7\left(-13\right)-\left(-8\times 4\right)}&\frac{7}{7\left(-13\right)-\left(-8\times 4\right)}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{59}&-\frac{8}{59}\\\frac{4}{59}&-\frac{7}{59}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{59}\times 9-\frac{8}{59}\left(-10\right)\\\frac{4}{59}\times 9-\frac{7}{59}\left(-10\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{197}{59}\\\frac{106}{59}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{197}{59},y=\frac{106}{59}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
7x-8y=9,4x-13y=-10
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
4\times 7x+4\left(-8\right)y=4\times 9,7\times 4x+7\left(-13\right)y=7\left(-10\right)
7x بىلەن 4x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 4 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 7 گە كۆپەيتىڭ.
28x-32y=36,28x-91y=-70
ئاددىيلاشتۇرۇڭ.
28x-28x-32y+91y=36+70
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 28x-32y=36 دىن 28x-91y=-70 نى ئېلىڭ.
-32y+91y=36+70
28x نى -28x گە قوشۇڭ. 28x بىلەن -28x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
59y=36+70
-32y نى 91y گە قوشۇڭ.
59y=106
36 نى 70 گە قوشۇڭ.
y=\frac{106}{59}
ھەر ئىككى تەرەپنى 59 گە بۆلۈڭ.
4x-13\times \frac{106}{59}=-10
4x-13y=-10 دە \frac{106}{59} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
4x-\frac{1378}{59}=-10
-13 نى \frac{106}{59} كە كۆپەيتىڭ.
4x=\frac{788}{59}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1378}{59} نى قوشۇڭ.
x=\frac{197}{59}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=\frac{197}{59},y=\frac{106}{59}
سىستېما ھەل قىلىندى.