\left\{ \begin{array} { l } { 6 x - y = - 1 } \\ { 6 x + y = - 1 } \end{array} \right.
x، y نى يېشىش
x=-\frac{1}{6}\approx -0.166666667
y=0
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
6x-y=-1,6x+y=-1
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
6x-y=-1
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
6x=y-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە y نى قوشۇڭ.
x=\frac{1}{6}\left(y-1\right)
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x=\frac{1}{6}y-\frac{1}{6}
\frac{1}{6} نى y-1 كە كۆپەيتىڭ.
6\left(\frac{1}{6}y-\frac{1}{6}\right)+y=-1
يەنە بىر تەڭلىمە 6x+y=-1 دىكى x نىڭ ئورنىغا \frac{-1+y}{6} نى ئالماشتۇرۇڭ.
y-1+y=-1
6 نى \frac{-1+y}{6} كە كۆپەيتىڭ.
2y-1=-1
y نى y گە قوشۇڭ.
2y=0
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نى قوشۇڭ.
y=0
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=-\frac{1}{6}
x=\frac{1}{6}y-\frac{1}{6} دە 0 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{1}{6},y=0
سىستېما ھەل قىلىندى.
6x-y=-1,6x+y=-1
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}6&-1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-1\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}6&-1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}-1\\-1\end{matrix}\right)
\left(\begin{matrix}6&-1\\6&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}-1\\-1\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}-1\\-1\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-\left(-6\right)}&-\frac{-1}{6-\left(-6\right)}\\-\frac{6}{6-\left(-6\right)}&\frac{6}{6-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-1\\-1\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{12}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-1\\-1\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\left(-1\right)+\frac{1}{12}\left(-1\right)\\-\frac{1}{2}\left(-1\right)+\frac{1}{2}\left(-1\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\\0\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{1}{6},y=0
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
6x-y=-1,6x+y=-1
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
6x-6x-y-y=-1+1
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 6x-y=-1 دىن 6x+y=-1 نى ئېلىڭ.
-y-y=-1+1
6x نى -6x گە قوشۇڭ. 6x بىلەن -6x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-2y=-1+1
-y نى -y گە قوشۇڭ.
-2y=0
-1 نى 1 گە قوشۇڭ.
y=0
ھەر ئىككى تەرەپنى -2 گە بۆلۈڭ.
6x=-1
6x+y=-1 دە 0 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{1}{6}
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x=-\frac{1}{6},y=0
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}