ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

6x-4y=30,2x+6y=-34
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
6x-4y=30
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
6x=4y+30
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 4y نى قوشۇڭ.
x=\frac{1}{6}\left(4y+30\right)
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x=\frac{2}{3}y+5
\frac{1}{6} نى 4y+30 كە كۆپەيتىڭ.
2\left(\frac{2}{3}y+5\right)+6y=-34
يەنە بىر تەڭلىمە 2x+6y=-34 دىكى x نىڭ ئورنىغا \frac{2y}{3}+5 نى ئالماشتۇرۇڭ.
\frac{4}{3}y+10+6y=-34
2 نى \frac{2y}{3}+5 كە كۆپەيتىڭ.
\frac{22}{3}y+10=-34
\frac{4y}{3} نى 6y گە قوشۇڭ.
\frac{22}{3}y=-44
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 10 نى ئېلىڭ.
y=-6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{22}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{2}{3}\left(-6\right)+5
x=\frac{2}{3}y+5 دە -6 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-4+5
\frac{2}{3} نى -6 كە كۆپەيتىڭ.
x=1
5 نى -4 گە قوشۇڭ.
x=1,y=-6
سىستېما ھەل قىلىندى.
6x-4y=30,2x+6y=-34
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}6&-4\\2&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\-34\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}6&-4\\2&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}30\\-34\end{matrix}\right)
\left(\begin{matrix}6&-4\\2&6\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}30\\-34\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}30\\-34\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{6\times 6-\left(-4\times 2\right)}&-\frac{-4}{6\times 6-\left(-4\times 2\right)}\\-\frac{2}{6\times 6-\left(-4\times 2\right)}&\frac{6}{6\times 6-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}30\\-34\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}&\frac{1}{11}\\-\frac{1}{22}&\frac{3}{22}\end{matrix}\right)\left(\begin{matrix}30\\-34\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}\times 30+\frac{1}{11}\left(-34\right)\\-\frac{1}{22}\times 30+\frac{3}{22}\left(-34\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-6\end{matrix}\right)
ھېسابلاڭ.
x=1,y=-6
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
6x-4y=30,2x+6y=-34
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2\times 6x+2\left(-4\right)y=2\times 30,6\times 2x+6\times 6y=6\left(-34\right)
6x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 6 گە كۆپەيتىڭ.
12x-8y=60,12x+36y=-204
ئاددىيلاشتۇرۇڭ.
12x-12x-8y-36y=60+204
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 12x-8y=60 دىن 12x+36y=-204 نى ئېلىڭ.
-8y-36y=60+204
12x نى -12x گە قوشۇڭ. 12x بىلەن -12x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-44y=60+204
-8y نى -36y گە قوشۇڭ.
-44y=264
60 نى 204 گە قوشۇڭ.
y=-6
ھەر ئىككى تەرەپنى -44 گە بۆلۈڭ.
2x+6\left(-6\right)=-34
2x+6y=-34 دە -6 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x-36=-34
6 نى -6 كە كۆپەيتىڭ.
2x=2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 36 نى قوشۇڭ.
x=1
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=1,y=-6
سىستېما ھەل قىلىندى.