\left\{ \begin{array} { l } { 6 x + 8 y = 20 } \\ { 5 y + 3 x = 8 } \end{array} \right.
x، y نى يېشىش
x=6
y=-2
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
6x+8y=20,3x+5y=8
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
6x+8y=20
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
6x=-8y+20
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 8y نى ئېلىڭ.
x=\frac{1}{6}\left(-8y+20\right)
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x=-\frac{4}{3}y+\frac{10}{3}
\frac{1}{6} نى -8y+20 كە كۆپەيتىڭ.
3\left(-\frac{4}{3}y+\frac{10}{3}\right)+5y=8
يەنە بىر تەڭلىمە 3x+5y=8 دىكى x نىڭ ئورنىغا \frac{-4y+10}{3} نى ئالماشتۇرۇڭ.
-4y+10+5y=8
3 نى \frac{-4y+10}{3} كە كۆپەيتىڭ.
y+10=8
-4y نى 5y گە قوشۇڭ.
y=-2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 10 نى ئېلىڭ.
x=-\frac{4}{3}\left(-2\right)+\frac{10}{3}
x=-\frac{4}{3}y+\frac{10}{3} دە -2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{8+10}{3}
-\frac{4}{3} نى -2 كە كۆپەيتىڭ.
x=6
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{10}{3} نى \frac{8}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=6,y=-2
سىستېما ھەل قىلىندى.
6x+8y=20,3x+5y=8
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}6&8\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\8\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}6&8\\3&5\end{matrix}\right))\left(\begin{matrix}6&8\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&8\\3&5\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
\left(\begin{matrix}6&8\\3&5\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&8\\3&5\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&8\\3&5\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6\times 5-8\times 3}&-\frac{8}{6\times 5-8\times 3}\\-\frac{3}{6\times 5-8\times 3}&\frac{6}{6\times 5-8\times 3}\end{matrix}\right)\left(\begin{matrix}20\\8\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}&-\frac{4}{3}\\-\frac{1}{2}&1\end{matrix}\right)\left(\begin{matrix}20\\8\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\times 20-\frac{4}{3}\times 8\\-\frac{1}{2}\times 20+8\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-2\end{matrix}\right)
ھېسابلاڭ.
x=6,y=-2
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
6x+8y=20,3x+5y=8
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3\times 6x+3\times 8y=3\times 20,6\times 3x+6\times 5y=6\times 8
6x بىلەن 3x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 6 گە كۆپەيتىڭ.
18x+24y=60,18x+30y=48
ئاددىيلاشتۇرۇڭ.
18x-18x+24y-30y=60-48
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 18x+24y=60 دىن 18x+30y=48 نى ئېلىڭ.
24y-30y=60-48
18x نى -18x گە قوشۇڭ. 18x بىلەن -18x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-6y=60-48
24y نى -30y گە قوشۇڭ.
-6y=12
60 نى -48 گە قوشۇڭ.
y=-2
ھەر ئىككى تەرەپنى -6 گە بۆلۈڭ.
3x+5\left(-2\right)=8
3x+5y=8 دە -2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
3x-10=8
5 نى -2 كە كۆپەيتىڭ.
3x=18
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 10 نى قوشۇڭ.
x=6
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=6,y=-2
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}