ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

6x+7y=-19,6x-5y=17
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
6x+7y=-19
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
6x=-7y-19
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 7y نى ئېلىڭ.
x=\frac{1}{6}\left(-7y-19\right)
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x=-\frac{7}{6}y-\frac{19}{6}
\frac{1}{6} نى -7y-19 كە كۆپەيتىڭ.
6\left(-\frac{7}{6}y-\frac{19}{6}\right)-5y=17
يەنە بىر تەڭلىمە 6x-5y=17 دىكى x نىڭ ئورنىغا \frac{-7y-19}{6} نى ئالماشتۇرۇڭ.
-7y-19-5y=17
6 نى \frac{-7y-19}{6} كە كۆپەيتىڭ.
-12y-19=17
-7y نى -5y گە قوشۇڭ.
-12y=36
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 19 نى قوشۇڭ.
y=-3
ھەر ئىككى تەرەپنى -12 گە بۆلۈڭ.
x=-\frac{7}{6}\left(-3\right)-\frac{19}{6}
x=-\frac{7}{6}y-\frac{19}{6} دە -3 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{7}{2}-\frac{19}{6}
-\frac{7}{6} نى -3 كە كۆپەيتىڭ.
x=\frac{1}{3}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{19}{6} نى \frac{7}{2} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{1}{3},y=-3
سىستېما ھەل قىلىندى.
6x+7y=-19,6x-5y=17
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}6&7\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-19\\17\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}6&7\\6&-5\end{matrix}\right))\left(\begin{matrix}6&7\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\6&-5\end{matrix}\right))\left(\begin{matrix}-19\\17\end{matrix}\right)
\left(\begin{matrix}6&7\\6&-5\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\6&-5\end{matrix}\right))\left(\begin{matrix}-19\\17\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\6&-5\end{matrix}\right))\left(\begin{matrix}-19\\17\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{6\left(-5\right)-7\times 6}&-\frac{7}{6\left(-5\right)-7\times 6}\\-\frac{6}{6\left(-5\right)-7\times 6}&\frac{6}{6\left(-5\right)-7\times 6}\end{matrix}\right)\left(\begin{matrix}-19\\17\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{72}&\frac{7}{72}\\\frac{1}{12}&-\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}-19\\17\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{72}\left(-19\right)+\frac{7}{72}\times 17\\\frac{1}{12}\left(-19\right)-\frac{1}{12}\times 17\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\\-3\end{matrix}\right)
ھېسابلاڭ.
x=\frac{1}{3},y=-3
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
6x+7y=-19,6x-5y=17
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
6x-6x+7y+5y=-19-17
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 6x+7y=-19 دىن 6x-5y=17 نى ئېلىڭ.
7y+5y=-19-17
6x نى -6x گە قوشۇڭ. 6x بىلەن -6x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
12y=-19-17
7y نى 5y گە قوشۇڭ.
12y=-36
-19 نى -17 گە قوشۇڭ.
y=-3
ھەر ئىككى تەرەپنى 12 گە بۆلۈڭ.
6x-5\left(-3\right)=17
6x-5y=17 دە -3 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
6x+15=17
-5 نى -3 كە كۆپەيتىڭ.
6x=2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 15 نى ئېلىڭ.
x=\frac{1}{3}
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x=\frac{1}{3},y=-3
سىستېما ھەل قىلىندى.