ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

6x+2y=300,3x+5y=600
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
6x+2y=300
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
6x=-2y+300
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2y نى ئېلىڭ.
x=\frac{1}{6}\left(-2y+300\right)
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x=-\frac{1}{3}y+50
\frac{1}{6} نى -2y+300 كە كۆپەيتىڭ.
3\left(-\frac{1}{3}y+50\right)+5y=600
يەنە بىر تەڭلىمە 3x+5y=600 دىكى x نىڭ ئورنىغا -\frac{y}{3}+50 نى ئالماشتۇرۇڭ.
-y+150+5y=600
3 نى -\frac{y}{3}+50 كە كۆپەيتىڭ.
4y+150=600
-y نى 5y گە قوشۇڭ.
4y=450
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 150 نى ئېلىڭ.
y=\frac{225}{2}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=-\frac{1}{3}\times \frac{225}{2}+50
x=-\frac{1}{3}y+50 دە \frac{225}{2} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{75}{2}+50
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{1}{3} نى \frac{225}{2} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{25}{2}
50 نى -\frac{75}{2} گە قوشۇڭ.
x=\frac{25}{2},y=\frac{225}{2}
سىستېما ھەل قىلىندى.
6x+2y=300,3x+5y=600
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}6&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\600\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}6&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}300\\600\end{matrix}\right)
\left(\begin{matrix}6&2\\3&5\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}300\\600\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}300\\600\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6\times 5-2\times 3}&-\frac{2}{6\times 5-2\times 3}\\-\frac{3}{6\times 5-2\times 3}&\frac{6}{6\times 5-2\times 3}\end{matrix}\right)\left(\begin{matrix}300\\600\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{24}&-\frac{1}{12}\\-\frac{1}{8}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}300\\600\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{24}\times 300-\frac{1}{12}\times 600\\-\frac{1}{8}\times 300+\frac{1}{4}\times 600\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{2}\\\frac{225}{2}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{25}{2},y=\frac{225}{2}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
6x+2y=300,3x+5y=600
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3\times 6x+3\times 2y=3\times 300,6\times 3x+6\times 5y=6\times 600
6x بىلەن 3x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 6 گە كۆپەيتىڭ.
18x+6y=900,18x+30y=3600
ئاددىيلاشتۇرۇڭ.
18x-18x+6y-30y=900-3600
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 18x+6y=900 دىن 18x+30y=3600 نى ئېلىڭ.
6y-30y=900-3600
18x نى -18x گە قوشۇڭ. 18x بىلەن -18x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-24y=900-3600
6y نى -30y گە قوشۇڭ.
-24y=-2700
900 نى -3600 گە قوشۇڭ.
y=\frac{225}{2}
ھەر ئىككى تەرەپنى -24 گە بۆلۈڭ.
3x+5\times \frac{225}{2}=600
3x+5y=600 دە \frac{225}{2} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
3x+\frac{1125}{2}=600
5 نى \frac{225}{2} كە كۆپەيتىڭ.
3x=\frac{75}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1125}{2} نى ئېلىڭ.
x=\frac{25}{2}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{25}{2},y=\frac{225}{2}
سىستېما ھەل قىلىندى.