ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

5x-3y=6,4x+2y=3
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
5x-3y=6
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
5x=3y+6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3y نى قوشۇڭ.
x=\frac{1}{5}\left(3y+6\right)
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=\frac{3}{5}y+\frac{6}{5}
\frac{1}{5} نى 6+3y كە كۆپەيتىڭ.
4\left(\frac{3}{5}y+\frac{6}{5}\right)+2y=3
يەنە بىر تەڭلىمە 4x+2y=3 دىكى x نىڭ ئورنىغا \frac{6+3y}{5} نى ئالماشتۇرۇڭ.
\frac{12}{5}y+\frac{24}{5}+2y=3
4 نى \frac{6+3y}{5} كە كۆپەيتىڭ.
\frac{22}{5}y+\frac{24}{5}=3
\frac{12y}{5} نى 2y گە قوشۇڭ.
\frac{22}{5}y=-\frac{9}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{24}{5} نى ئېلىڭ.
y=-\frac{9}{22}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{22}{5} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{3}{5}\left(-\frac{9}{22}\right)+\frac{6}{5}
x=\frac{3}{5}y+\frac{6}{5} دە -\frac{9}{22} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{27}{110}+\frac{6}{5}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{3}{5} نى -\frac{9}{22} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{21}{22}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{6}{5} نى -\frac{27}{110} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{21}{22},y=-\frac{9}{22}
سىستېما ھەل قىلىندى.
5x-3y=6,4x+2y=3
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}5&-3\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\3\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}5&-3\\4&2\end{matrix}\right))\left(\begin{matrix}5&-3\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\4&2\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
\left(\begin{matrix}5&-3\\4&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\4&2\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\4&2\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-3\times 4\right)}&-\frac{-3}{5\times 2-\left(-3\times 4\right)}\\-\frac{4}{5\times 2-\left(-3\times 4\right)}&\frac{5}{5\times 2-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{3}{22}\\-\frac{2}{11}&\frac{5}{22}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 6+\frac{3}{22}\times 3\\-\frac{2}{11}\times 6+\frac{5}{22}\times 3\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{21}{22}\\-\frac{9}{22}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{21}{22},y=-\frac{9}{22}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
5x-3y=6,4x+2y=3
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
4\times 5x+4\left(-3\right)y=4\times 6,5\times 4x+5\times 2y=5\times 3
5x بىلەن 4x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 4 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 5 گە كۆپەيتىڭ.
20x-12y=24,20x+10y=15
ئاددىيلاشتۇرۇڭ.
20x-20x-12y-10y=24-15
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 20x-12y=24 دىن 20x+10y=15 نى ئېلىڭ.
-12y-10y=24-15
20x نى -20x گە قوشۇڭ. 20x بىلەن -20x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-22y=24-15
-12y نى -10y گە قوشۇڭ.
-22y=9
24 نى -15 گە قوشۇڭ.
y=-\frac{9}{22}
ھەر ئىككى تەرەپنى -22 گە بۆلۈڭ.
4x+2\left(-\frac{9}{22}\right)=3
4x+2y=3 دە -\frac{9}{22} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
4x-\frac{9}{11}=3
2 نى -\frac{9}{22} كە كۆپەيتىڭ.
4x=\frac{42}{11}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{9}{11} نى قوشۇڭ.
x=\frac{21}{22}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=\frac{21}{22},y=-\frac{9}{22}
سىستېما ھەل قىلىندى.