ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

5x-2y=7,2x+7y=-5
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
5x-2y=7
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
5x=2y+7
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2y نى قوشۇڭ.
x=\frac{1}{5}\left(2y+7\right)
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=\frac{2}{5}y+\frac{7}{5}
\frac{1}{5} نى 2y+7 كە كۆپەيتىڭ.
2\left(\frac{2}{5}y+\frac{7}{5}\right)+7y=-5
يەنە بىر تەڭلىمە 2x+7y=-5 دىكى x نىڭ ئورنىغا \frac{2y+7}{5} نى ئالماشتۇرۇڭ.
\frac{4}{5}y+\frac{14}{5}+7y=-5
2 نى \frac{2y+7}{5} كە كۆپەيتىڭ.
\frac{39}{5}y+\frac{14}{5}=-5
\frac{4y}{5} نى 7y گە قوشۇڭ.
\frac{39}{5}y=-\frac{39}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{14}{5} نى ئېلىڭ.
y=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{39}{5} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{2}{5}\left(-1\right)+\frac{7}{5}
x=\frac{2}{5}y+\frac{7}{5} دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-2+7}{5}
\frac{2}{5} نى -1 كە كۆپەيتىڭ.
x=1
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{7}{5} نى -\frac{2}{5} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=1,y=-1
سىستېما ھەل قىلىندى.
5x-2y=7,2x+7y=-5
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}5&-2\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-5\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}5&-2\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}7\\-5\end{matrix}\right)
\left(\begin{matrix}5&-2\\2&7\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}7\\-5\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}7\\-5\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-2\times 2\right)}&-\frac{-2}{5\times 7-\left(-2\times 2\right)}\\-\frac{2}{5\times 7-\left(-2\times 2\right)}&\frac{5}{5\times 7-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}7\\-5\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{39}&\frac{2}{39}\\-\frac{2}{39}&\frac{5}{39}\end{matrix}\right)\left(\begin{matrix}7\\-5\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{39}\times 7+\frac{2}{39}\left(-5\right)\\-\frac{2}{39}\times 7+\frac{5}{39}\left(-5\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
ھېسابلاڭ.
x=1,y=-1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
5x-2y=7,2x+7y=-5
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2\times 5x+2\left(-2\right)y=2\times 7,5\times 2x+5\times 7y=5\left(-5\right)
5x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 5 گە كۆپەيتىڭ.
10x-4y=14,10x+35y=-25
ئاددىيلاشتۇرۇڭ.
10x-10x-4y-35y=14+25
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 10x-4y=14 دىن 10x+35y=-25 نى ئېلىڭ.
-4y-35y=14+25
10x نى -10x گە قوشۇڭ. 10x بىلەن -10x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-39y=14+25
-4y نى -35y گە قوشۇڭ.
-39y=39
14 نى 25 گە قوشۇڭ.
y=-1
ھەر ئىككى تەرەپنى -39 گە بۆلۈڭ.
2x+7\left(-1\right)=-5
2x+7y=-5 دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x-7=-5
7 نى -1 كە كۆپەيتىڭ.
2x=2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 7 نى قوشۇڭ.
x=1
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=1,y=-1
سىستېما ھەل قىلىندى.