\left\{ \begin{array} { l } { 5 x + 6 y = 32 } \\ { 3 x - 2 y = - 20 } \end{array} \right.
x، y نى يېشىش
x=-2
y=7
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
5x+6y=32,3x-2y=-20
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
5x+6y=32
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
5x=-6y+32
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 6y نى ئېلىڭ.
x=\frac{1}{5}\left(-6y+32\right)
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=-\frac{6}{5}y+\frac{32}{5}
\frac{1}{5} نى -6y+32 كە كۆپەيتىڭ.
3\left(-\frac{6}{5}y+\frac{32}{5}\right)-2y=-20
يەنە بىر تەڭلىمە 3x-2y=-20 دىكى x نىڭ ئورنىغا \frac{-6y+32}{5} نى ئالماشتۇرۇڭ.
-\frac{18}{5}y+\frac{96}{5}-2y=-20
3 نى \frac{-6y+32}{5} كە كۆپەيتىڭ.
-\frac{28}{5}y+\frac{96}{5}=-20
-\frac{18y}{5} نى -2y گە قوشۇڭ.
-\frac{28}{5}y=-\frac{196}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{96}{5} نى ئېلىڭ.
y=7
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{28}{5} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{6}{5}\times 7+\frac{32}{5}
x=-\frac{6}{5}y+\frac{32}{5} دە 7 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-42+32}{5}
-\frac{6}{5} نى 7 كە كۆپەيتىڭ.
x=-2
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{32}{5} نى -\frac{42}{5} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-2,y=7
سىستېما ھەل قىلىندى.
5x+6y=32,3x-2y=-20
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}5&6\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}32\\-20\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}5&6\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}32\\-20\end{matrix}\right)
\left(\begin{matrix}5&6\\3&-2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}32\\-20\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}32\\-20\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5\left(-2\right)-6\times 3}&-\frac{6}{5\left(-2\right)-6\times 3}\\-\frac{3}{5\left(-2\right)-6\times 3}&\frac{5}{5\left(-2\right)-6\times 3}\end{matrix}\right)\left(\begin{matrix}32\\-20\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{3}{14}\\\frac{3}{28}&-\frac{5}{28}\end{matrix}\right)\left(\begin{matrix}32\\-20\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 32+\frac{3}{14}\left(-20\right)\\\frac{3}{28}\times 32-\frac{5}{28}\left(-20\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\7\end{matrix}\right)
ھېسابلاڭ.
x=-2,y=7
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
5x+6y=32,3x-2y=-20
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3\times 5x+3\times 6y=3\times 32,5\times 3x+5\left(-2\right)y=5\left(-20\right)
5x بىلەن 3x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 5 گە كۆپەيتىڭ.
15x+18y=96,15x-10y=-100
ئاددىيلاشتۇرۇڭ.
15x-15x+18y+10y=96+100
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 15x+18y=96 دىن 15x-10y=-100 نى ئېلىڭ.
18y+10y=96+100
15x نى -15x گە قوشۇڭ. 15x بىلەن -15x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
28y=96+100
18y نى 10y گە قوشۇڭ.
28y=196
96 نى 100 گە قوشۇڭ.
y=7
ھەر ئىككى تەرەپنى 28 گە بۆلۈڭ.
3x-2\times 7=-20
3x-2y=-20 دە 7 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
3x-14=-20
-2 نى 7 كە كۆپەيتىڭ.
3x=-6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 14 نى قوشۇڭ.
x=-2
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=-2,y=7
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}