\left\{ \begin{array} { l } { 4 x + y = 3 } \\ { 3 x - 3 y = - 1 } \end{array} \right.
x، y نى يېشىش
x=\frac{8}{15}\approx 0.533333333
y=\frac{13}{15}\approx 0.866666667
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
4x+y=3,3x-3y=-1
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
4x+y=3
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
4x=-y+3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن y نى ئېلىڭ.
x=\frac{1}{4}\left(-y+3\right)
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=-\frac{1}{4}y+\frac{3}{4}
\frac{1}{4} نى -y+3 كە كۆپەيتىڭ.
3\left(-\frac{1}{4}y+\frac{3}{4}\right)-3y=-1
يەنە بىر تەڭلىمە 3x-3y=-1 دىكى x نىڭ ئورنىغا \frac{-y+3}{4} نى ئالماشتۇرۇڭ.
-\frac{3}{4}y+\frac{9}{4}-3y=-1
3 نى \frac{-y+3}{4} كە كۆپەيتىڭ.
-\frac{15}{4}y+\frac{9}{4}=-1
-\frac{3y}{4} نى -3y گە قوشۇڭ.
-\frac{15}{4}y=-\frac{13}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{9}{4} نى ئېلىڭ.
y=\frac{13}{15}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{15}{4} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{1}{4}\times \frac{13}{15}+\frac{3}{4}
x=-\frac{1}{4}y+\frac{3}{4} دە \frac{13}{15} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{13}{60}+\frac{3}{4}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{1}{4} نى \frac{13}{15} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{8}{15}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{3}{4} نى -\frac{13}{60} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{8}{15},y=\frac{13}{15}
سىستېما ھەل قىلىندى.
4x+y=3,3x-3y=-1
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}4&1\\3&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}4&1\\3&-3\end{matrix}\right))\left(\begin{matrix}4&1\\3&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&-3\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
\left(\begin{matrix}4&1\\3&-3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&-3\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&-3\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4\left(-3\right)-3}&-\frac{1}{4\left(-3\right)-3}\\-\frac{3}{4\left(-3\right)-3}&\frac{4}{4\left(-3\right)-3}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{15}\\\frac{1}{5}&-\frac{4}{15}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 3+\frac{1}{15}\left(-1\right)\\\frac{1}{5}\times 3-\frac{4}{15}\left(-1\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{15}\\\frac{13}{15}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{8}{15},y=\frac{13}{15}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
4x+y=3,3x-3y=-1
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3\times 4x+3y=3\times 3,4\times 3x+4\left(-3\right)y=4\left(-1\right)
4x بىلەن 3x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 4 گە كۆپەيتىڭ.
12x+3y=9,12x-12y=-4
ئاددىيلاشتۇرۇڭ.
12x-12x+3y+12y=9+4
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 12x+3y=9 دىن 12x-12y=-4 نى ئېلىڭ.
3y+12y=9+4
12x نى -12x گە قوشۇڭ. 12x بىلەن -12x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
15y=9+4
3y نى 12y گە قوشۇڭ.
15y=13
9 نى 4 گە قوشۇڭ.
y=\frac{13}{15}
ھەر ئىككى تەرەپنى 15 گە بۆلۈڭ.
3x-3\times \frac{13}{15}=-1
3x-3y=-1 دە \frac{13}{15} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
3x-\frac{13}{5}=-1
-3 نى \frac{13}{15} كە كۆپەيتىڭ.
3x=\frac{8}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{13}{5} نى قوشۇڭ.
x=\frac{8}{15}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{8}{15},y=\frac{13}{15}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}