\left\{ \begin{array} { l } { 4 x + 8 y - 4 z = 4 } \\ { 3 x + 6 y + 5 z = - 13 } \\ { - 2 x + y + 12 z = - 17 } \end{array} \right.
x، y، z نى يېشىش
x=-3
y=1
z=-2
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
-2x+y+12z=-17 3x+6y+5z=-13 4x+8y-4z=4
تەڭلىمىنى قايتا رەتلەڭ.
y=2x-12z-17
-2x+y+12z=-17 دىكى y نى تېپىڭ.
3x+6\left(2x-12z-17\right)+5z=-13 4x+8\left(2x-12z-17\right)-4z=4
ئىككىنچى ۋە ئۈچىنچى تەڭلىمىدىكى 2x-12z-17 نى y گە ئالماشتۇرۇڭ.
x=\frac{67}{15}z+\frac{89}{15} z=-\frac{7}{5}+\frac{1}{5}x
بۇ تەڭلىمىدىكى x ۋە z نى ئايرىم-ئايرىم يېشىڭ.
z=-\frac{7}{5}+\frac{1}{5}\left(\frac{67}{15}z+\frac{89}{15}\right)
تەڭلىمە z=-\frac{7}{5}+\frac{1}{5}x دىكى \frac{67}{15}z+\frac{89}{15} نى x گە ئالماشتۇرۇڭ.
z=-2
z=-\frac{7}{5}+\frac{1}{5}\left(\frac{67}{15}z+\frac{89}{15}\right) دىكى z نى تېپىڭ.
x=\frac{67}{15}\left(-2\right)+\frac{89}{15}
تەڭلىمە x=\frac{67}{15}z+\frac{89}{15} دىكى -2 نى z گە ئالماشتۇرۇڭ.
x=-3
x=\frac{67}{15}\left(-2\right)+\frac{89}{15} دىكى x نى ھېسابلاڭ.
y=2\left(-3\right)-12\left(-2\right)-17
تەڭلىمە y=2x-12z-17 دىكى -3 نى x گە ۋە -2 نى z گە ئالماشتۇرۇڭ.
y=1
y=2\left(-3\right)-12\left(-2\right)-17 دىكى y نى ھېسابلاڭ.
x=-3 y=1 z=-2
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}