\left\{ \begin{array} { l } { 30 x + 15 y = 675 } \\ { 42 x + 20 y = 940 } \end{array} \right.
x، y نى يېشىش
x=20
y=5
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
30x+15y=675,42x+20y=940
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
30x+15y=675
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
30x=-15y+675
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 15y نى ئېلىڭ.
x=\frac{1}{30}\left(-15y+675\right)
ھەر ئىككى تەرەپنى 30 گە بۆلۈڭ.
x=-\frac{1}{2}y+\frac{45}{2}
\frac{1}{30} نى -15y+675 كە كۆپەيتىڭ.
42\left(-\frac{1}{2}y+\frac{45}{2}\right)+20y=940
يەنە بىر تەڭلىمە 42x+20y=940 دىكى x نىڭ ئورنىغا \frac{-y+45}{2} نى ئالماشتۇرۇڭ.
-21y+945+20y=940
42 نى \frac{-y+45}{2} كە كۆپەيتىڭ.
-y+945=940
-21y نى 20y گە قوشۇڭ.
-y=-5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 945 نى ئېلىڭ.
y=5
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
x=-\frac{1}{2}\times 5+\frac{45}{2}
x=-\frac{1}{2}y+\frac{45}{2} دە 5 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-5+45}{2}
-\frac{1}{2} نى 5 كە كۆپەيتىڭ.
x=20
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{45}{2} نى -\frac{5}{2} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=20,y=5
سىستېما ھەل قىلىندى.
30x+15y=675,42x+20y=940
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}30&15\\42&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}675\\940\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}30&15\\42&20\end{matrix}\right))\left(\begin{matrix}30&15\\42&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&15\\42&20\end{matrix}\right))\left(\begin{matrix}675\\940\end{matrix}\right)
\left(\begin{matrix}30&15\\42&20\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&15\\42&20\end{matrix}\right))\left(\begin{matrix}675\\940\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&15\\42&20\end{matrix}\right))\left(\begin{matrix}675\\940\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{30\times 20-15\times 42}&-\frac{15}{30\times 20-15\times 42}\\-\frac{42}{30\times 20-15\times 42}&\frac{30}{30\times 20-15\times 42}\end{matrix}\right)\left(\begin{matrix}675\\940\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكس ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭلاشقا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى قىلىپ قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{1}{2}\\\frac{7}{5}&-1\end{matrix}\right)\left(\begin{matrix}675\\940\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 675+\frac{1}{2}\times 940\\\frac{7}{5}\times 675-940\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\5\end{matrix}\right)
ھېسابلاڭ.
x=20,y=5
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
30x+15y=675,42x+20y=940
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
42\times 30x+42\times 15y=42\times 675,30\times 42x+30\times 20y=30\times 940
30x بىلەن 42x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 42 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 30 گە كۆپەيتىڭ.
1260x+630y=28350,1260x+600y=28200
ئاددىيلاشتۇرۇڭ.
1260x-1260x+630y-600y=28350-28200
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 1260x+630y=28350 دىن 1260x+600y=28200 نى ئېلىڭ.
630y-600y=28350-28200
1260x نى -1260x گە قوشۇڭ. 1260x بىلەن -1260x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
30y=28350-28200
630y نى -600y گە قوشۇڭ.
30y=150
28350 نى -28200 گە قوشۇڭ.
y=5
ھەر ئىككى تەرەپنى 30 گە بۆلۈڭ.
42x+20\times 5=940
42x+20y=940 دە 5 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
42x+100=940
20 نى 5 كە كۆپەيتىڭ.
42x=840
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 100 نى ئېلىڭ.
x=20
ھەر ئىككى تەرەپنى 42 گە بۆلۈڭ.
x=20,y=5
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}