ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x-y=1,5x-3y=1
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x-y=1
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=y+1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە y نى قوشۇڭ.
x=\frac{1}{3}\left(y+1\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{1}{3}y+\frac{1}{3}
\frac{1}{3} نى y+1 كە كۆپەيتىڭ.
5\left(\frac{1}{3}y+\frac{1}{3}\right)-3y=1
يەنە بىر تەڭلىمە 5x-3y=1 دىكى x نىڭ ئورنىغا \frac{1+y}{3} نى ئالماشتۇرۇڭ.
\frac{5}{3}y+\frac{5}{3}-3y=1
5 نى \frac{1+y}{3} كە كۆپەيتىڭ.
-\frac{4}{3}y+\frac{5}{3}=1
\frac{5y}{3} نى -3y گە قوشۇڭ.
-\frac{4}{3}y=-\frac{2}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{5}{3} نى ئېلىڭ.
y=\frac{1}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{4}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{1}{3}\times \frac{1}{2}+\frac{1}{3}
x=\frac{1}{3}y+\frac{1}{3} دە \frac{1}{2} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{1}{6}+\frac{1}{3}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{1}{3} نى \frac{1}{2} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{1}{2}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{3} نى \frac{1}{6} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{1}{2},y=\frac{1}{2}
سىستېما ھەل قىلىندى.
3x-y=1,5x-3y=1
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&-1\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&-1\\5&-3\end{matrix}\right))\left(\begin{matrix}3&-1\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&-3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
\left(\begin{matrix}3&-1\\5&-3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&-3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&-3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-\left(-5\right)}&-\frac{-1}{3\left(-3\right)-\left(-5\right)}\\-\frac{5}{3\left(-3\right)-\left(-5\right)}&\frac{3}{3\left(-3\right)-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&-\frac{1}{4}\\\frac{5}{4}&-\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3-1}{4}\\\frac{5-3}{4}\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\\frac{1}{2}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{1}{2},y=\frac{1}{2}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x-y=1,5x-3y=1
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
5\times 3x+5\left(-1\right)y=5,3\times 5x+3\left(-3\right)y=3
3x بىلەن 5x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 5 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
15x-5y=5,15x-9y=3
ئاددىيلاشتۇرۇڭ.
15x-15x-5y+9y=5-3
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 15x-5y=5 دىن 15x-9y=3 نى ئېلىڭ.
-5y+9y=5-3
15x نى -15x گە قوشۇڭ. 15x بىلەن -15x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
4y=5-3
-5y نى 9y گە قوشۇڭ.
4y=2
5 نى -3 گە قوشۇڭ.
y=\frac{1}{2}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
5x-3\times \frac{1}{2}=1
5x-3y=1 دە \frac{1}{2} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
5x-\frac{3}{2}=1
-3 نى \frac{1}{2} كە كۆپەيتىڭ.
5x=\frac{5}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{3}{2} نى قوشۇڭ.
x=\frac{1}{2}
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=\frac{1}{2},y=\frac{1}{2}
سىستېما ھەل قىلىندى.