\left\{ \begin{array} { l } { 3 x - y = - 1 } \\ { - x + 2 y = 7 } \end{array} \right.
x، y نى يېشىش
x=1
y=4
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3x-y=-1,-x+2y=7
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x-y=-1
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=y-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە y نى قوشۇڭ.
x=\frac{1}{3}\left(y-1\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{1}{3}y-\frac{1}{3}
\frac{1}{3} نى y-1 كە كۆپەيتىڭ.
-\left(\frac{1}{3}y-\frac{1}{3}\right)+2y=7
يەنە بىر تەڭلىمە -x+2y=7 دىكى x نىڭ ئورنىغا \frac{-1+y}{3} نى ئالماشتۇرۇڭ.
-\frac{1}{3}y+\frac{1}{3}+2y=7
-1 نى \frac{-1+y}{3} كە كۆپەيتىڭ.
\frac{5}{3}y+\frac{1}{3}=7
-\frac{y}{3} نى 2y گە قوشۇڭ.
\frac{5}{3}y=\frac{20}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{3} نى ئېلىڭ.
y=4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{5}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{1}{3}\times 4-\frac{1}{3}
x=\frac{1}{3}y-\frac{1}{3} دە 4 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{4-1}{3}
\frac{1}{3} نى 4 كە كۆپەيتىڭ.
x=1
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{1}{3} نى \frac{4}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=1,y=4
سىستېما ھەل قىلىندى.
3x-y=-1,-x+2y=7
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\7\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-\left(-1\right)\right)}&-\frac{-1}{3\times 2-\left(-\left(-1\right)\right)}\\-\frac{-1}{3\times 2-\left(-\left(-1\right)\right)}&\frac{3}{3\times 2-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-1\right)+\frac{1}{5}\times 7\\\frac{1}{5}\left(-1\right)+\frac{3}{5}\times 7\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
ھېسابلاڭ.
x=1,y=4
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x-y=-1,-x+2y=7
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-3x-\left(-y\right)=-\left(-1\right),3\left(-1\right)x+3\times 2y=3\times 7
3x بىلەن -x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -1 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
-3x+y=1,-3x+6y=21
ئاددىيلاشتۇرۇڭ.
-3x+3x+y-6y=1-21
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -3x+y=1 دىن -3x+6y=21 نى ئېلىڭ.
y-6y=1-21
-3x نى 3x گە قوشۇڭ. -3x بىلەن 3x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-5y=1-21
y نى -6y گە قوشۇڭ.
-5y=-20
1 نى -21 گە قوشۇڭ.
y=4
ھەر ئىككى تەرەپنى -5 گە بۆلۈڭ.
-x+2\times 4=7
-x+2y=7 دە 4 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-x+8=7
2 نى 4 كە كۆپەيتىڭ.
-x=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 8 نى ئېلىڭ.
x=1
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
x=1,y=4
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}