\left\{ \begin{array} { l } { 3 x - 8 y = 9 } \\ { 4 x + 3 y = - 10 } \end{array} \right.
x، y نى يېشىش
x = -\frac{53}{41} = -1\frac{12}{41} \approx -1.292682927
y = -\frac{66}{41} = -1\frac{25}{41} \approx -1.609756098
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3x-8y=9,4x+3y=-10
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x-8y=9
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=8y+9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 8y نى قوشۇڭ.
x=\frac{1}{3}\left(8y+9\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{8}{3}y+3
\frac{1}{3} نى 8y+9 كە كۆپەيتىڭ.
4\left(\frac{8}{3}y+3\right)+3y=-10
يەنە بىر تەڭلىمە 4x+3y=-10 دىكى x نىڭ ئورنىغا \frac{8y}{3}+3 نى ئالماشتۇرۇڭ.
\frac{32}{3}y+12+3y=-10
4 نى \frac{8y}{3}+3 كە كۆپەيتىڭ.
\frac{41}{3}y+12=-10
\frac{32y}{3} نى 3y گە قوشۇڭ.
\frac{41}{3}y=-22
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 12 نى ئېلىڭ.
y=-\frac{66}{41}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{41}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{8}{3}\left(-\frac{66}{41}\right)+3
x=\frac{8}{3}y+3 دە -\frac{66}{41} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{176}{41}+3
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{8}{3} نى -\frac{66}{41} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=-\frac{53}{41}
3 نى -\frac{176}{41} گە قوشۇڭ.
x=-\frac{53}{41},y=-\frac{66}{41}
سىستېما ھەل قىلىندى.
3x-8y=9,4x+3y=-10
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&-8\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-10\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&-8\\4&3\end{matrix}\right))\left(\begin{matrix}3&-8\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\4&3\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
\left(\begin{matrix}3&-8\\4&3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\4&3\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\4&3\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-8\times 4\right)}&-\frac{-8}{3\times 3-\left(-8\times 4\right)}\\-\frac{4}{3\times 3-\left(-8\times 4\right)}&\frac{3}{3\times 3-\left(-8\times 4\right)}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{41}&\frac{8}{41}\\-\frac{4}{41}&\frac{3}{41}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{41}\times 9+\frac{8}{41}\left(-10\right)\\-\frac{4}{41}\times 9+\frac{3}{41}\left(-10\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{53}{41}\\-\frac{66}{41}\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{53}{41},y=-\frac{66}{41}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x-8y=9,4x+3y=-10
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
4\times 3x+4\left(-8\right)y=4\times 9,3\times 4x+3\times 3y=3\left(-10\right)
3x بىلەن 4x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 4 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
12x-32y=36,12x+9y=-30
ئاددىيلاشتۇرۇڭ.
12x-12x-32y-9y=36+30
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 12x-32y=36 دىن 12x+9y=-30 نى ئېلىڭ.
-32y-9y=36+30
12x نى -12x گە قوشۇڭ. 12x بىلەن -12x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-41y=36+30
-32y نى -9y گە قوشۇڭ.
-41y=66
36 نى 30 گە قوشۇڭ.
y=-\frac{66}{41}
ھەر ئىككى تەرەپنى -41 گە بۆلۈڭ.
4x+3\left(-\frac{66}{41}\right)=-10
4x+3y=-10 دە -\frac{66}{41} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
4x-\frac{198}{41}=-10
3 نى -\frac{66}{41} كە كۆپەيتىڭ.
4x=-\frac{212}{41}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{198}{41} نى قوشۇڭ.
x=-\frac{53}{41}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=-\frac{53}{41},y=-\frac{66}{41}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}