\left\{ \begin{array} { l } { 3 x - 8 y = - 13 } \\ { 5 y + 2 x = - 19 } \end{array} \right.
x، y نى يېشىش
x=-7
y=-1
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3x-8y=-13,2x+5y=-19
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x-8y=-13
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=8y-13
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 8y نى قوشۇڭ.
x=\frac{1}{3}\left(8y-13\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{8}{3}y-\frac{13}{3}
\frac{1}{3} نى 8y-13 كە كۆپەيتىڭ.
2\left(\frac{8}{3}y-\frac{13}{3}\right)+5y=-19
يەنە بىر تەڭلىمە 2x+5y=-19 دىكى x نىڭ ئورنىغا \frac{8y-13}{3} نى ئالماشتۇرۇڭ.
\frac{16}{3}y-\frac{26}{3}+5y=-19
2 نى \frac{8y-13}{3} كە كۆپەيتىڭ.
\frac{31}{3}y-\frac{26}{3}=-19
\frac{16y}{3} نى 5y گە قوشۇڭ.
\frac{31}{3}y=-\frac{31}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{26}{3} نى قوشۇڭ.
y=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{31}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{8}{3}\left(-1\right)-\frac{13}{3}
x=\frac{8}{3}y-\frac{13}{3} دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-8-13}{3}
\frac{8}{3} نى -1 كە كۆپەيتىڭ.
x=-7
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{13}{3} نى -\frac{8}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-7,y=-1
سىستېما ھەل قىلىندى.
3x-8y=-13,2x+5y=-19
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&-8\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-13\\-19\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&-8\\2&5\end{matrix}\right))\left(\begin{matrix}3&-8\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\2&5\end{matrix}\right))\left(\begin{matrix}-13\\-19\end{matrix}\right)
\left(\begin{matrix}3&-8\\2&5\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\2&5\end{matrix}\right))\left(\begin{matrix}-13\\-19\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\2&5\end{matrix}\right))\left(\begin{matrix}-13\\-19\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-\left(-8\times 2\right)}&-\frac{-8}{3\times 5-\left(-8\times 2\right)}\\-\frac{2}{3\times 5-\left(-8\times 2\right)}&\frac{3}{3\times 5-\left(-8\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-13\\-19\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}&\frac{8}{31}\\-\frac{2}{31}&\frac{3}{31}\end{matrix}\right)\left(\begin{matrix}-13\\-19\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}\left(-13\right)+\frac{8}{31}\left(-19\right)\\-\frac{2}{31}\left(-13\right)+\frac{3}{31}\left(-19\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\-1\end{matrix}\right)
ھېسابلاڭ.
x=-7,y=-1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x-8y=-13,2x+5y=-19
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2\times 3x+2\left(-8\right)y=2\left(-13\right),3\times 2x+3\times 5y=3\left(-19\right)
3x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
6x-16y=-26,6x+15y=-57
ئاددىيلاشتۇرۇڭ.
6x-6x-16y-15y=-26+57
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 6x-16y=-26 دىن 6x+15y=-57 نى ئېلىڭ.
-16y-15y=-26+57
6x نى -6x گە قوشۇڭ. 6x بىلەن -6x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-31y=-26+57
-16y نى -15y گە قوشۇڭ.
-31y=31
-26 نى 57 گە قوشۇڭ.
y=-1
ھەر ئىككى تەرەپنى -31 گە بۆلۈڭ.
2x+5\left(-1\right)=-19
2x+5y=-19 دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x-5=-19
5 نى -1 كە كۆپەيتىڭ.
2x=-14
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 5 نى قوشۇڭ.
x=-7
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=-7,y=-1
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}