ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x-4y=7,\frac{1}{2}\left(x+3\right)-y=4
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x-4y=7
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=4y+7
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 4y نى قوشۇڭ.
x=\frac{1}{3}\left(4y+7\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{4}{3}y+\frac{7}{3}
\frac{1}{3} نى 4y+7 كە كۆپەيتىڭ.
\frac{1}{2}\left(\frac{4}{3}y+\frac{7}{3}+3\right)-y=4
يەنە بىر تەڭلىمە \frac{1}{2}\left(x+3\right)-y=4 دىكى x نىڭ ئورنىغا \frac{4y+7}{3} نى ئالماشتۇرۇڭ.
\frac{1}{2}\left(\frac{4}{3}y+\frac{16}{3}\right)-y=4
\frac{7}{3} نى 3 گە قوشۇڭ.
\frac{2}{3}y+\frac{8}{3}-y=4
\frac{1}{2} نى \frac{16+4y}{3} كە كۆپەيتىڭ.
-\frac{1}{3}y+\frac{8}{3}=4
\frac{2y}{3} نى -y گە قوشۇڭ.
-\frac{1}{3}y=\frac{4}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{8}{3} نى ئېلىڭ.
y=-4
ھەر ئىككى تەرەپنى -3 گە كۆپەيتىڭ.
x=\frac{4}{3}\left(-4\right)+\frac{7}{3}
x=\frac{4}{3}y+\frac{7}{3} دە -4 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-16+7}{3}
\frac{4}{3} نى -4 كە كۆپەيتىڭ.
x=-3
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{7}{3} نى -\frac{16}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-3,y=-4
سىستېما ھەل قىلىندى.
3x-4y=7,\frac{1}{2}\left(x+3\right)-y=4
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\frac{1}{2}\left(x+3\right)-y=4
ئىككىنچى تەڭلىمىنى ئاددىيلاشتۇرۇپ، ئۆلچەملىك شەكىلگە كەلتۈرۈڭ.
\frac{1}{2}x+\frac{3}{2}-y=4
\frac{1}{2} نى x+3 كە كۆپەيتىڭ.
\frac{1}{2}x-y=\frac{5}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{3}{2} نى ئېلىڭ.
\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}&-\frac{-4}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}\\-\frac{\frac{1}{2}}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}&\frac{3}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-4\\\frac{1}{2}&-3\end{matrix}\right)\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7-4\times \frac{5}{2}\\\frac{1}{2}\times 7-3\times \frac{5}{2}\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-4\end{matrix}\right)
ھېسابلاڭ.
x=-3,y=-4
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.