ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x-2y=-3,2x+4y=2
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x-2y=-3
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=2y-3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2y نى قوشۇڭ.
x=\frac{1}{3}\left(2y-3\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{2}{3}y-1
\frac{1}{3} نى 2y-3 كە كۆپەيتىڭ.
2\left(\frac{2}{3}y-1\right)+4y=2
يەنە بىر تەڭلىمە 2x+4y=2 دىكى x نىڭ ئورنىغا \frac{2y}{3}-1 نى ئالماشتۇرۇڭ.
\frac{4}{3}y-2+4y=2
2 نى \frac{2y}{3}-1 كە كۆپەيتىڭ.
\frac{16}{3}y-2=2
\frac{4y}{3} نى 4y گە قوشۇڭ.
\frac{16}{3}y=4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2 نى قوشۇڭ.
y=\frac{3}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{16}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{2}{3}\times \frac{3}{4}-1
x=\frac{2}{3}y-1 دە \frac{3}{4} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{1}{2}-1
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{2}{3} نى \frac{3}{4} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=-\frac{1}{2}
-1 نى \frac{1}{2} گە قوشۇڭ.
x=-\frac{1}{2},y=\frac{3}{4}
سىستېما ھەل قىلىندى.
3x-2y=-3,2x+4y=2
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&-2\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&-2\\2&4\end{matrix}\right))\left(\begin{matrix}3&-2\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&4\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
\left(\begin{matrix}3&-2\\2&4\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&4\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&4\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-\left(-2\times 2\right)}&-\frac{-2}{3\times 4-\left(-2\times 2\right)}\\-\frac{2}{3\times 4-\left(-2\times 2\right)}&\frac{3}{3\times 4-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{8}\\-\frac{1}{8}&\frac{3}{16}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-3\right)+\frac{1}{8}\times 2\\-\frac{1}{8}\left(-3\right)+\frac{3}{16}\times 2\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\\frac{3}{4}\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{1}{2},y=\frac{3}{4}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x-2y=-3,2x+4y=2
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2\times 3x+2\left(-2\right)y=2\left(-3\right),3\times 2x+3\times 4y=3\times 2
3x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
6x-4y=-6,6x+12y=6
ئاددىيلاشتۇرۇڭ.
6x-6x-4y-12y=-6-6
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 6x-4y=-6 دىن 6x+12y=6 نى ئېلىڭ.
-4y-12y=-6-6
6x نى -6x گە قوشۇڭ. 6x بىلەن -6x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-16y=-6-6
-4y نى -12y گە قوشۇڭ.
-16y=-12
-6 نى -6 گە قوشۇڭ.
y=\frac{3}{4}
ھەر ئىككى تەرەپنى -16 گە بۆلۈڭ.
2x+4\times \frac{3}{4}=2
2x+4y=2 دە \frac{3}{4} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x+3=2
4 نى \frac{3}{4} كە كۆپەيتىڭ.
2x=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3 نى ئېلىڭ.
x=-\frac{1}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=-\frac{1}{2},y=\frac{3}{4}
سىستېما ھەل قىلىندى.