\left\{ \begin{array} { l } { 3 x + y = 2 } \\ { 5 x - y = 8 } \end{array} \right.
x، y نى يېشىش
x = \frac{5}{4} = 1\frac{1}{4} = 1.25
y = -\frac{7}{4} = -1\frac{3}{4} = -1.75
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3x+y=2,5x-y=8
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x+y=2
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=-y+2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن y نى ئېلىڭ.
x=\frac{1}{3}\left(-y+2\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=-\frac{1}{3}y+\frac{2}{3}
\frac{1}{3} نى -y+2 كە كۆپەيتىڭ.
5\left(-\frac{1}{3}y+\frac{2}{3}\right)-y=8
يەنە بىر تەڭلىمە 5x-y=8 دىكى x نىڭ ئورنىغا \frac{-y+2}{3} نى ئالماشتۇرۇڭ.
-\frac{5}{3}y+\frac{10}{3}-y=8
5 نى \frac{-y+2}{3} كە كۆپەيتىڭ.
-\frac{8}{3}y+\frac{10}{3}=8
-\frac{5y}{3} نى -y گە قوشۇڭ.
-\frac{8}{3}y=\frac{14}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{10}{3} نى ئېلىڭ.
y=-\frac{7}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{8}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{1}{3}\left(-\frac{7}{4}\right)+\frac{2}{3}
x=-\frac{1}{3}y+\frac{2}{3} دە -\frac{7}{4} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{7}{12}+\frac{2}{3}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{1}{3} نى -\frac{7}{4} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{5}{4}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{2}{3} نى \frac{7}{12} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{5}{4},y=-\frac{7}{4}
سىستېما ھەل قىلىندى.
3x+y=2,5x-y=8
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\8\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
\left(\begin{matrix}3&1\\5&-1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-5}&-\frac{1}{3\left(-1\right)-5}\\-\frac{5}{3\left(-1\right)-5}&\frac{3}{3\left(-1\right)-5}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{5}{8}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 2+\frac{1}{8}\times 8\\\frac{5}{8}\times 2-\frac{3}{8}\times 8\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}\\-\frac{7}{4}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{5}{4},y=-\frac{7}{4}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x+y=2,5x-y=8
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
5\times 3x+5y=5\times 2,3\times 5x+3\left(-1\right)y=3\times 8
3x بىلەن 5x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 5 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
15x+5y=10,15x-3y=24
ئاددىيلاشتۇرۇڭ.
15x-15x+5y+3y=10-24
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 15x+5y=10 دىن 15x-3y=24 نى ئېلىڭ.
5y+3y=10-24
15x نى -15x گە قوشۇڭ. 15x بىلەن -15x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
8y=10-24
5y نى 3y گە قوشۇڭ.
8y=-14
10 نى -24 گە قوشۇڭ.
y=-\frac{7}{4}
ھەر ئىككى تەرەپنى 8 گە بۆلۈڭ.
5x-\left(-\frac{7}{4}\right)=8
5x-y=8 دە -\frac{7}{4} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
5x=\frac{25}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{7}{4} نى ئېلىڭ.
x=\frac{5}{4}
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=\frac{5}{4},y=-\frac{7}{4}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}