ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x+y=-1,x+5y=9
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x+y=-1
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=-y-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن y نى ئېلىڭ.
x=\frac{1}{3}\left(-y-1\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=-\frac{1}{3}y-\frac{1}{3}
\frac{1}{3} نى -y-1 كە كۆپەيتىڭ.
-\frac{1}{3}y-\frac{1}{3}+5y=9
يەنە بىر تەڭلىمە x+5y=9 دىكى x نىڭ ئورنىغا \frac{-y-1}{3} نى ئالماشتۇرۇڭ.
\frac{14}{3}y-\frac{1}{3}=9
-\frac{y}{3} نى 5y گە قوشۇڭ.
\frac{14}{3}y=\frac{28}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{3} نى قوشۇڭ.
y=2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{14}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{1}{3}\times 2-\frac{1}{3}
x=-\frac{1}{3}y-\frac{1}{3} دە 2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-2-1}{3}
-\frac{1}{3} نى 2 كە كۆپەيتىڭ.
x=-1
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{1}{3} نى -\frac{2}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-1,y=2
سىستېما ھەل قىلىندى.
3x+y=-1,x+5y=9
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&1\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\9\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}3&1\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
\left(\begin{matrix}3&1\\1&5\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-1}&-\frac{1}{3\times 5-1}\\-\frac{1}{3\times 5-1}&\frac{3}{3\times 5-1}\end{matrix}\right)\left(\begin{matrix}-1\\9\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}&-\frac{1}{14}\\-\frac{1}{14}&\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}-1\\9\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}\left(-1\right)-\frac{1}{14}\times 9\\-\frac{1}{14}\left(-1\right)+\frac{3}{14}\times 9\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
ھېسابلاڭ.
x=-1,y=2
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x+y=-1,x+5y=9
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3x+y=-1,3x+3\times 5y=3\times 9
3x بىلەن x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 1 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
3x+y=-1,3x+15y=27
ئاددىيلاشتۇرۇڭ.
3x-3x+y-15y=-1-27
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 3x+y=-1 دىن 3x+15y=27 نى ئېلىڭ.
y-15y=-1-27
3x نى -3x گە قوشۇڭ. 3x بىلەن -3x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-14y=-1-27
y نى -15y گە قوشۇڭ.
-14y=-28
-1 نى -27 گە قوشۇڭ.
y=2
ھەر ئىككى تەرەپنى -14 گە بۆلۈڭ.
x+5\times 2=9
x+5y=9 دە 2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x+10=9
5 نى 2 كە كۆپەيتىڭ.
x=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 10 نى ئېلىڭ.
x=-1,y=2
سىستېما ھەل قىلىندى.