ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x+6y=24,9x+5y=68
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x+6y=24
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=-6y+24
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 6y نى ئېلىڭ.
x=\frac{1}{3}\left(-6y+24\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=-2y+8
\frac{1}{3} نى -6y+24 كە كۆپەيتىڭ.
9\left(-2y+8\right)+5y=68
يەنە بىر تەڭلىمە 9x+5y=68 دىكى x نىڭ ئورنىغا -2y+8 نى ئالماشتۇرۇڭ.
-18y+72+5y=68
9 نى -2y+8 كە كۆپەيتىڭ.
-13y+72=68
-18y نى 5y گە قوشۇڭ.
-13y=-4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 72 نى ئېلىڭ.
y=\frac{4}{13}
ھەر ئىككى تەرەپنى -13 گە بۆلۈڭ.
x=-2\times \frac{4}{13}+8
x=-2y+8 دە \frac{4}{13} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{8}{13}+8
-2 نى \frac{4}{13} كە كۆپەيتىڭ.
x=\frac{96}{13}
8 نى -\frac{8}{13} گە قوشۇڭ.
x=\frac{96}{13},y=\frac{4}{13}
سىستېما ھەل قىلىندى.
3x+6y=24,9x+5y=68
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&6\\9&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\68\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&6\\9&5\end{matrix}\right))\left(\begin{matrix}3&6\\9&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\9&5\end{matrix}\right))\left(\begin{matrix}24\\68\end{matrix}\right)
\left(\begin{matrix}3&6\\9&5\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\9&5\end{matrix}\right))\left(\begin{matrix}24\\68\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\9&5\end{matrix}\right))\left(\begin{matrix}24\\68\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-6\times 9}&-\frac{6}{3\times 5-6\times 9}\\-\frac{9}{3\times 5-6\times 9}&\frac{3}{3\times 5-6\times 9}\end{matrix}\right)\left(\begin{matrix}24\\68\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{39}&\frac{2}{13}\\\frac{3}{13}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}24\\68\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{39}\times 24+\frac{2}{13}\times 68\\\frac{3}{13}\times 24-\frac{1}{13}\times 68\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{96}{13}\\\frac{4}{13}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{96}{13},y=\frac{4}{13}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x+6y=24,9x+5y=68
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
9\times 3x+9\times 6y=9\times 24,3\times 9x+3\times 5y=3\times 68
3x بىلەن 9x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 9 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
27x+54y=216,27x+15y=204
ئاددىيلاشتۇرۇڭ.
27x-27x+54y-15y=216-204
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 27x+54y=216 دىن 27x+15y=204 نى ئېلىڭ.
54y-15y=216-204
27x نى -27x گە قوشۇڭ. 27x بىلەن -27x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
39y=216-204
54y نى -15y گە قوشۇڭ.
39y=12
216 نى -204 گە قوشۇڭ.
y=\frac{4}{13}
ھەر ئىككى تەرەپنى 39 گە بۆلۈڭ.
9x+5\times \frac{4}{13}=68
9x+5y=68 دە \frac{4}{13} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
9x+\frac{20}{13}=68
5 نى \frac{4}{13} كە كۆپەيتىڭ.
9x=\frac{864}{13}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{20}{13} نى ئېلىڭ.
x=\frac{96}{13}
ھەر ئىككى تەرەپنى 9 گە بۆلۈڭ.
x=\frac{96}{13},y=\frac{4}{13}
سىستېما ھەل قىلىندى.