ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x+5y=9,2x-5y=1
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x+5y=9
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=-5y+9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 5y نى ئېلىڭ.
x=\frac{1}{3}\left(-5y+9\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=-\frac{5}{3}y+3
\frac{1}{3} نى -5y+9 كە كۆپەيتىڭ.
2\left(-\frac{5}{3}y+3\right)-5y=1
يەنە بىر تەڭلىمە 2x-5y=1 دىكى x نىڭ ئورنىغا -\frac{5y}{3}+3 نى ئالماشتۇرۇڭ.
-\frac{10}{3}y+6-5y=1
2 نى -\frac{5y}{3}+3 كە كۆپەيتىڭ.
-\frac{25}{3}y+6=1
-\frac{10y}{3} نى -5y گە قوشۇڭ.
-\frac{25}{3}y=-5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 6 نى ئېلىڭ.
y=\frac{3}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{25}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{5}{3}\times \frac{3}{5}+3
x=-\frac{5}{3}y+3 دە \frac{3}{5} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-1+3
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{5}{3} نى \frac{3}{5} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=2
3 نى -1 گە قوشۇڭ.
x=2,y=\frac{3}{5}
سىستېما ھەل قىلىندى.
3x+5y=9,2x-5y=1
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&5\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\1\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&5\\2&-5\end{matrix}\right))\left(\begin{matrix}3&5\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&-5\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
\left(\begin{matrix}3&5\\2&-5\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&-5\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&-5\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3\left(-5\right)-5\times 2}&-\frac{5}{3\left(-5\right)-5\times 2}\\-\frac{2}{3\left(-5\right)-5\times 2}&\frac{3}{3\left(-5\right)-5\times 2}\end{matrix}\right)\left(\begin{matrix}9\\1\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{2}{25}&-\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}9\\1\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 9+\frac{1}{5}\\\frac{2}{25}\times 9-\frac{3}{25}\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\\frac{3}{5}\end{matrix}\right)
ھېسابلاڭ.
x=2,y=\frac{3}{5}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x+5y=9,2x-5y=1
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2\times 3x+2\times 5y=2\times 9,3\times 2x+3\left(-5\right)y=3
3x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
6x+10y=18,6x-15y=3
ئاددىيلاشتۇرۇڭ.
6x-6x+10y+15y=18-3
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 6x+10y=18 دىن 6x-15y=3 نى ئېلىڭ.
10y+15y=18-3
6x نى -6x گە قوشۇڭ. 6x بىلەن -6x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
25y=18-3
10y نى 15y گە قوشۇڭ.
25y=15
18 نى -3 گە قوشۇڭ.
y=\frac{3}{5}
ھەر ئىككى تەرەپنى 25 گە بۆلۈڭ.
2x-5\times \frac{3}{5}=1
2x-5y=1 دە \frac{3}{5} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x-3=1
-5 نى \frac{3}{5} كە كۆپەيتىڭ.
2x=4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3 نى قوشۇڭ.
x=2
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=2,y=\frac{3}{5}
سىستېما ھەل قىلىندى.