ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x+2y=7,2x-y=7
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x+2y=7
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=-2y+7
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2y نى ئېلىڭ.
x=\frac{1}{3}\left(-2y+7\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=-\frac{2}{3}y+\frac{7}{3}
\frac{1}{3} نى -2y+7 كە كۆپەيتىڭ.
2\left(-\frac{2}{3}y+\frac{7}{3}\right)-y=7
يەنە بىر تەڭلىمە 2x-y=7 دىكى x نىڭ ئورنىغا \frac{-2y+7}{3} نى ئالماشتۇرۇڭ.
-\frac{4}{3}y+\frac{14}{3}-y=7
2 نى \frac{-2y+7}{3} كە كۆپەيتىڭ.
-\frac{7}{3}y+\frac{14}{3}=7
-\frac{4y}{3} نى -y گە قوشۇڭ.
-\frac{7}{3}y=\frac{7}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{14}{3} نى ئېلىڭ.
y=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{7}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{2}{3}\left(-1\right)+\frac{7}{3}
x=-\frac{2}{3}y+\frac{7}{3} دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{2+7}{3}
-\frac{2}{3} نى -1 كە كۆپەيتىڭ.
x=3
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{7}{3} نى \frac{2}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=3,y=-1
سىستېما ھەل قىلىندى.
3x+2y=7,2x-y=7
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&2\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\7\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&2\\2&-1\end{matrix}\right))\left(\begin{matrix}3&2\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-1\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
\left(\begin{matrix}3&2\\2&-1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-1\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-1\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-2\times 2}&-\frac{2}{3\left(-1\right)-2\times 2}\\-\frac{2}{3\left(-1\right)-2\times 2}&\frac{3}{3\left(-1\right)-2\times 2}\end{matrix}\right)\left(\begin{matrix}7\\7\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\\frac{2}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}7\\7\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 7+\frac{2}{7}\times 7\\\frac{2}{7}\times 7-\frac{3}{7}\times 7\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
ھېسابلاڭ.
x=3,y=-1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x+2y=7,2x-y=7
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2\times 3x+2\times 2y=2\times 7,3\times 2x+3\left(-1\right)y=3\times 7
3x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
6x+4y=14,6x-3y=21
ئاددىيلاشتۇرۇڭ.
6x-6x+4y+3y=14-21
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 6x+4y=14 دىن 6x-3y=21 نى ئېلىڭ.
4y+3y=14-21
6x نى -6x گە قوشۇڭ. 6x بىلەن -6x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
7y=14-21
4y نى 3y گە قوشۇڭ.
7y=-7
14 نى -21 گە قوشۇڭ.
y=-1
ھەر ئىككى تەرەپنى 7 گە بۆلۈڭ.
2x-\left(-1\right)=7
2x-y=7 دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x=6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1 نى ئېلىڭ.
x=3
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=3,y=-1
سىستېما ھەل قىلىندى.