\left\{ \begin{array} { l } { 3 ( x + 2 ) = 2 y } \\ { 2 c y + 5 = 7 x } \end{array} \right.
x، y نى يېشىش
x=-\frac{6c+5}{3c-7}
y=-\frac{57}{2\left(3c-7\right)}
c\neq \frac{7}{3}
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3x+6=2y
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تارقىتىش قانۇنى بويىچە 3 نى x+2 گە كۆپەيتىڭ.
3x+6-2y=0
ھەر ئىككى تەرەپتىن 2y نى ئېلىڭ.
3x-2y=-6
ھەر ئىككى تەرەپتىن 6 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
2cy+5-7x=0
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 7x نى ئېلىڭ.
2cy-7x=-5
ھەر ئىككى تەرەپتىن 5 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
3x-2y=-6,-7x+2cy=-5
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x-2y=-6
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=2y-6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2y نى قوشۇڭ.
x=\frac{1}{3}\left(2y-6\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{2}{3}y-2
\frac{1}{3} نى -6+2y كە كۆپەيتىڭ.
-7\left(\frac{2}{3}y-2\right)+2cy=-5
يەنە بىر تەڭلىمە -7x+2cy=-5 دىكى x نىڭ ئورنىغا \frac{2y}{3}-2 نى ئالماشتۇرۇڭ.
-\frac{14}{3}y+14+2cy=-5
-7 نى \frac{2y}{3}-2 كە كۆپەيتىڭ.
\left(2c-\frac{14}{3}\right)y+14=-5
-\frac{14y}{3} نى 2cy گە قوشۇڭ.
\left(2c-\frac{14}{3}\right)y=-19
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 14 نى ئېلىڭ.
y=-\frac{57}{2\left(3c-7\right)}
ھەر ئىككى تەرەپنى -\frac{14}{3}+2c گە بۆلۈڭ.
x=\frac{2}{3}\left(-\frac{57}{2\left(3c-7\right)}\right)-2
x=\frac{2}{3}y-2 دە -\frac{57}{2\left(-7+3c\right)} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{19}{3c-7}-2
\frac{2}{3} نى -\frac{57}{2\left(-7+3c\right)} كە كۆپەيتىڭ.
x=-\frac{6c+5}{3c-7}
-2 نى -\frac{19}{-7+3c} گە قوشۇڭ.
x=-\frac{6c+5}{3c-7},y=-\frac{57}{2\left(3c-7\right)}
سىستېما ھەل قىلىندى.
3x+6=2y
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تارقىتىش قانۇنى بويىچە 3 نى x+2 گە كۆپەيتىڭ.
3x+6-2y=0
ھەر ئىككى تەرەپتىن 2y نى ئېلىڭ.
3x-2y=-6
ھەر ئىككى تەرەپتىن 6 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
2cy+5-7x=0
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 7x نى ئېلىڭ.
2cy-7x=-5
ھەر ئىككى تەرەپتىن 5 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
3x-2y=-6,-7x+2cy=-5
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-5\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}-6\\-5\end{matrix}\right)
\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}-6\\-5\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}-6\\-5\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2c}{3\times 2c-\left(-2\left(-7\right)\right)}&-\frac{-2}{3\times 2c-\left(-2\left(-7\right)\right)}\\-\frac{-7}{3\times 2c-\left(-2\left(-7\right)\right)}&\frac{3}{3\times 2c-\left(-2\left(-7\right)\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-5\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{c}{3c-7}&\frac{1}{3c-7}\\\frac{7}{2\left(3c-7\right)}&\frac{3}{2\left(3c-7\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-5\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{c}{3c-7}\left(-6\right)+\frac{1}{3c-7}\left(-5\right)\\\frac{7}{2\left(3c-7\right)}\left(-6\right)+\frac{3}{2\left(3c-7\right)}\left(-5\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6c+5}{3c-7}\\-\frac{57}{2\left(3c-7\right)}\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{6c+5}{3c-7},y=-\frac{57}{2\left(3c-7\right)}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x+6=2y
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تارقىتىش قانۇنى بويىچە 3 نى x+2 گە كۆپەيتىڭ.
3x+6-2y=0
ھەر ئىككى تەرەپتىن 2y نى ئېلىڭ.
3x-2y=-6
ھەر ئىككى تەرەپتىن 6 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
2cy+5-7x=0
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 7x نى ئېلىڭ.
2cy-7x=-5
ھەر ئىككى تەرەپتىن 5 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
3x-2y=-6,-7x+2cy=-5
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-7\times 3x-7\left(-2\right)y=-7\left(-6\right),3\left(-7\right)x+3\times 2cy=3\left(-5\right)
3x بىلەن -7x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -7 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
-21x+14y=42,-21x+6cy=-15
ئاددىيلاشتۇرۇڭ.
-21x+21x+14y+\left(-6c\right)y=42+15
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -21x+14y=42 دىن -21x+6cy=-15 نى ئېلىڭ.
14y+\left(-6c\right)y=42+15
-21x نى 21x گە قوشۇڭ. -21x بىلەن 21x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
\left(14-6c\right)y=42+15
14y نى -6cy گە قوشۇڭ.
\left(14-6c\right)y=57
42 نى 15 گە قوشۇڭ.
y=\frac{57}{2\left(7-3c\right)}
ھەر ئىككى تەرەپنى 14-6c گە بۆلۈڭ.
-7x+2c\times \frac{57}{2\left(7-3c\right)}=-5
-7x+2cy=-5 دە \frac{57}{2\left(7-3c\right)} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-7x+\frac{57c}{7-3c}=-5
2c نى \frac{57}{2\left(7-3c\right)} كە كۆپەيتىڭ.
-7x=-\frac{7\left(6c+5\right)}{7-3c}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{57c}{7-3c} نى ئېلىڭ.
x=\frac{6c+5}{7-3c}
ھەر ئىككى تەرەپنى -7 گە بۆلۈڭ.
x=\frac{6c+5}{7-3c},y=\frac{57}{2\left(7-3c\right)}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}