ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2x-3y=5,x+3y=7
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
2x-3y=5
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
2x=3y+5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3y نى قوشۇڭ.
x=\frac{1}{2}\left(3y+5\right)
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=\frac{3}{2}y+\frac{5}{2}
\frac{1}{2} نى 3y+5 كە كۆپەيتىڭ.
\frac{3}{2}y+\frac{5}{2}+3y=7
يەنە بىر تەڭلىمە x+3y=7 دىكى x نىڭ ئورنىغا \frac{3y+5}{2} نى ئالماشتۇرۇڭ.
\frac{9}{2}y+\frac{5}{2}=7
\frac{3y}{2} نى 3y گە قوشۇڭ.
\frac{9}{2}y=\frac{9}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{5}{2} نى ئېلىڭ.
y=1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{9}{2} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{3+5}{2}
x=\frac{3}{2}y+\frac{5}{2} دە 1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=4
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{5}{2} نى \frac{3}{2} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=4,y=1
سىستېما ھەل قىلىندى.
2x-3y=5,x+3y=7
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}2&-3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}2&-3\\1&3\end{matrix}\right))\left(\begin{matrix}2&-3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&3\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
\left(\begin{matrix}2&-3\\1&3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&3\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&3\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-3\right)}&-\frac{-3}{2\times 3-\left(-3\right)}\\-\frac{1}{2\times 3-\left(-3\right)}&\frac{2}{2\times 3-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\-\frac{1}{9}&\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 5+\frac{1}{3}\times 7\\-\frac{1}{9}\times 5+\frac{2}{9}\times 7\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
ھېسابلاڭ.
x=4,y=1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
2x-3y=5,x+3y=7
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2x-3y=5,2x+2\times 3y=2\times 7
2x بىلەن x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 1 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 2 گە كۆپەيتىڭ.
2x-3y=5,2x+6y=14
ئاددىيلاشتۇرۇڭ.
2x-2x-3y-6y=5-14
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 2x-3y=5 دىن 2x+6y=14 نى ئېلىڭ.
-3y-6y=5-14
2x نى -2x گە قوشۇڭ. 2x بىلەن -2x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-9y=5-14
-3y نى -6y گە قوشۇڭ.
-9y=-9
5 نى -14 گە قوشۇڭ.
y=1
ھەر ئىككى تەرەپنى -9 گە بۆلۈڭ.
x+3=7
x+3y=7 دە 1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3 نى ئېلىڭ.
x=4,y=1
سىستېما ھەل قىلىندى.