ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2x-3y=4,4x+y=-6
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
2x-3y=4
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
2x=3y+4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3y نى قوشۇڭ.
x=\frac{1}{2}\left(3y+4\right)
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=\frac{3}{2}y+2
\frac{1}{2} نى 3y+4 كە كۆپەيتىڭ.
4\left(\frac{3}{2}y+2\right)+y=-6
يەنە بىر تەڭلىمە 4x+y=-6 دىكى x نىڭ ئورنىغا \frac{3y}{2}+2 نى ئالماشتۇرۇڭ.
6y+8+y=-6
4 نى \frac{3y}{2}+2 كە كۆپەيتىڭ.
7y+8=-6
6y نى y گە قوشۇڭ.
7y=-14
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 8 نى ئېلىڭ.
y=-2
ھەر ئىككى تەرەپنى 7 گە بۆلۈڭ.
x=\frac{3}{2}\left(-2\right)+2
x=\frac{3}{2}y+2 دە -2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-3+2
\frac{3}{2} نى -2 كە كۆپەيتىڭ.
x=-1
2 نى -3 گە قوشۇڭ.
x=-1,y=-2
سىستېما ھەل قىلىندى.
2x-3y=4,4x+y=-6
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}2&-3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-6\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}2&-3\\4&1\end{matrix}\right))\left(\begin{matrix}2&-3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&1\end{matrix}\right))\left(\begin{matrix}4\\-6\end{matrix}\right)
\left(\begin{matrix}2&-3\\4&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&1\end{matrix}\right))\left(\begin{matrix}4\\-6\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&1\end{matrix}\right))\left(\begin{matrix}4\\-6\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\times 4\right)}&-\frac{-3}{2-\left(-3\times 4\right)}\\-\frac{4}{2-\left(-3\times 4\right)}&\frac{2}{2-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}4\\-6\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{3}{14}\\-\frac{2}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}4\\-6\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 4+\frac{3}{14}\left(-6\right)\\-\frac{2}{7}\times 4+\frac{1}{7}\left(-6\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
ھېسابلاڭ.
x=-1,y=-2
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
2x-3y=4,4x+y=-6
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
4\times 2x+4\left(-3\right)y=4\times 4,2\times 4x+2y=2\left(-6\right)
2x بىلەن 4x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 4 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 2 گە كۆپەيتىڭ.
8x-12y=16,8x+2y=-12
ئاددىيلاشتۇرۇڭ.
8x-8x-12y-2y=16+12
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 8x-12y=16 دىن 8x+2y=-12 نى ئېلىڭ.
-12y-2y=16+12
8x نى -8x گە قوشۇڭ. 8x بىلەن -8x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-14y=16+12
-12y نى -2y گە قوشۇڭ.
-14y=28
16 نى 12 گە قوشۇڭ.
y=-2
ھەر ئىككى تەرەپنى -14 گە بۆلۈڭ.
4x-2=-6
4x+y=-6 دە -2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
4x=-4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2 نى قوشۇڭ.
x=-1
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=-1,y=-2
سىستېما ھەل قىلىندى.