ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2x-3y=-5,4x+9y=-7
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
2x-3y=-5
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
2x=3y-5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3y نى قوشۇڭ.
x=\frac{1}{2}\left(3y-5\right)
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=\frac{3}{2}y-\frac{5}{2}
\frac{1}{2} نى 3y-5 كە كۆپەيتىڭ.
4\left(\frac{3}{2}y-\frac{5}{2}\right)+9y=-7
يەنە بىر تەڭلىمە 4x+9y=-7 دىكى x نىڭ ئورنىغا \frac{3y-5}{2} نى ئالماشتۇرۇڭ.
6y-10+9y=-7
4 نى \frac{3y-5}{2} كە كۆپەيتىڭ.
15y-10=-7
6y نى 9y گە قوشۇڭ.
15y=3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 10 نى قوشۇڭ.
y=\frac{1}{5}
ھەر ئىككى تەرەپنى 15 گە بۆلۈڭ.
x=\frac{3}{2}\times \frac{1}{5}-\frac{5}{2}
x=\frac{3}{2}y-\frac{5}{2} دە \frac{1}{5} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{3}{10}-\frac{5}{2}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{3}{2} نى \frac{1}{5} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=-\frac{11}{5}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{5}{2} نى \frac{3}{10} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-\frac{11}{5},y=\frac{1}{5}
سىستېما ھەل قىلىندى.
2x-3y=-5,4x+9y=-7
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}2&-3\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-7\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}2&-3\\4&9\end{matrix}\right))\left(\begin{matrix}2&-3\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&9\end{matrix}\right))\left(\begin{matrix}-5\\-7\end{matrix}\right)
\left(\begin{matrix}2&-3\\4&9\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&9\end{matrix}\right))\left(\begin{matrix}-5\\-7\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&9\end{matrix}\right))\left(\begin{matrix}-5\\-7\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2\times 9-\left(-3\times 4\right)}&-\frac{-3}{2\times 9-\left(-3\times 4\right)}\\-\frac{4}{2\times 9-\left(-3\times 4\right)}&\frac{2}{2\times 9-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-5\\-7\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&\frac{1}{10}\\-\frac{2}{15}&\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}-5\\-7\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\left(-5\right)+\frac{1}{10}\left(-7\right)\\-\frac{2}{15}\left(-5\right)+\frac{1}{15}\left(-7\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{5}\\\frac{1}{5}\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{11}{5},y=\frac{1}{5}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
2x-3y=-5,4x+9y=-7
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
4\times 2x+4\left(-3\right)y=4\left(-5\right),2\times 4x+2\times 9y=2\left(-7\right)
2x بىلەن 4x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 4 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 2 گە كۆپەيتىڭ.
8x-12y=-20,8x+18y=-14
ئاددىيلاشتۇرۇڭ.
8x-8x-12y-18y=-20+14
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 8x-12y=-20 دىن 8x+18y=-14 نى ئېلىڭ.
-12y-18y=-20+14
8x نى -8x گە قوشۇڭ. 8x بىلەن -8x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-30y=-20+14
-12y نى -18y گە قوشۇڭ.
-30y=-6
-20 نى 14 گە قوشۇڭ.
y=\frac{1}{5}
ھەر ئىككى تەرەپنى -30 گە بۆلۈڭ.
4x+9\times \frac{1}{5}=-7
4x+9y=-7 دە \frac{1}{5} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
4x+\frac{9}{5}=-7
9 نى \frac{1}{5} كە كۆپەيتىڭ.
4x=-\frac{44}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{9}{5} نى ئېلىڭ.
x=-\frac{11}{5}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=-\frac{11}{5},y=\frac{1}{5}
سىستېما ھەل قىلىندى.