ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2x+4y=12,5x-8y=16
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
2x+4y=12
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
2x=-4y+12
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4y نى ئېلىڭ.
x=\frac{1}{2}\left(-4y+12\right)
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=-2y+6
\frac{1}{2} نى -4y+12 كە كۆپەيتىڭ.
5\left(-2y+6\right)-8y=16
يەنە بىر تەڭلىمە 5x-8y=16 دىكى x نىڭ ئورنىغا -2y+6 نى ئالماشتۇرۇڭ.
-10y+30-8y=16
5 نى -2y+6 كە كۆپەيتىڭ.
-18y+30=16
-10y نى -8y گە قوشۇڭ.
-18y=-14
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 30 نى ئېلىڭ.
y=\frac{7}{9}
ھەر ئىككى تەرەپنى -18 گە بۆلۈڭ.
x=-2\times \frac{7}{9}+6
x=-2y+6 دە \frac{7}{9} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{14}{9}+6
-2 نى \frac{7}{9} كە كۆپەيتىڭ.
x=\frac{40}{9}
6 نى -\frac{14}{9} گە قوشۇڭ.
x=\frac{40}{9},y=\frac{7}{9}
سىستېما ھەل قىلىندى.
2x+4y=12,5x-8y=16
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}2&4\\5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\16\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}2&4\\5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}12\\16\end{matrix}\right)
\left(\begin{matrix}2&4\\5&-8\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}12\\16\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}12\\16\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{2\left(-8\right)-4\times 5}&-\frac{4}{2\left(-8\right)-4\times 5}\\-\frac{5}{2\left(-8\right)-4\times 5}&\frac{2}{2\left(-8\right)-4\times 5}\end{matrix}\right)\left(\begin{matrix}12\\16\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}&\frac{1}{9}\\\frac{5}{36}&-\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}12\\16\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}\times 12+\frac{1}{9}\times 16\\\frac{5}{36}\times 12-\frac{1}{18}\times 16\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{40}{9}\\\frac{7}{9}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{40}{9},y=\frac{7}{9}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
2x+4y=12,5x-8y=16
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
5\times 2x+5\times 4y=5\times 12,2\times 5x+2\left(-8\right)y=2\times 16
2x بىلەن 5x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 5 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 2 گە كۆپەيتىڭ.
10x+20y=60,10x-16y=32
ئاددىيلاشتۇرۇڭ.
10x-10x+20y+16y=60-32
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 10x+20y=60 دىن 10x-16y=32 نى ئېلىڭ.
20y+16y=60-32
10x نى -10x گە قوشۇڭ. 10x بىلەن -10x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
36y=60-32
20y نى 16y گە قوشۇڭ.
36y=28
60 نى -32 گە قوشۇڭ.
y=\frac{7}{9}
ھەر ئىككى تەرەپنى 36 گە بۆلۈڭ.
5x-8\times \frac{7}{9}=16
5x-8y=16 دە \frac{7}{9} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
5x-\frac{56}{9}=16
-8 نى \frac{7}{9} كە كۆپەيتىڭ.
5x=\frac{200}{9}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{56}{9} نى قوشۇڭ.
x=\frac{40}{9}
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=\frac{40}{9},y=\frac{7}{9}
سىستېما ھەل قىلىندى.