ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2x+3y=13,6x+y=11
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
2x+3y=13
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
2x=-3y+13
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3y نى ئېلىڭ.
x=\frac{1}{2}\left(-3y+13\right)
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=-\frac{3}{2}y+\frac{13}{2}
\frac{1}{2} نى -3y+13 كە كۆپەيتىڭ.
6\left(-\frac{3}{2}y+\frac{13}{2}\right)+y=11
يەنە بىر تەڭلىمە 6x+y=11 دىكى x نىڭ ئورنىغا \frac{-3y+13}{2} نى ئالماشتۇرۇڭ.
-9y+39+y=11
6 نى \frac{-3y+13}{2} كە كۆپەيتىڭ.
-8y+39=11
-9y نى y گە قوشۇڭ.
-8y=-28
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 39 نى ئېلىڭ.
y=\frac{7}{2}
ھەر ئىككى تەرەپنى -8 گە بۆلۈڭ.
x=-\frac{3}{2}\times \frac{7}{2}+\frac{13}{2}
x=-\frac{3}{2}y+\frac{13}{2} دە \frac{7}{2} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{21}{4}+\frac{13}{2}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{3}{2} نى \frac{7}{2} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{5}{4}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{13}{2} نى -\frac{21}{4} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{5}{4},y=\frac{7}{2}
سىستېما ھەل قىلىندى.
2x+3y=13,6x+y=11
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}2&3\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\11\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}2&3\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
\left(\begin{matrix}2&3\\6&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\times 6}&-\frac{3}{2-3\times 6}\\-\frac{6}{2-3\times 6}&\frac{2}{2-3\times 6}\end{matrix}\right)\left(\begin{matrix}13\\11\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{16}&\frac{3}{16}\\\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}13\\11\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{16}\times 13+\frac{3}{16}\times 11\\\frac{3}{8}\times 13-\frac{1}{8}\times 11\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}\\\frac{7}{2}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{5}{4},y=\frac{7}{2}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
2x+3y=13,6x+y=11
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
6\times 2x+6\times 3y=6\times 13,2\times 6x+2y=2\times 11
2x بىلەن 6x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 6 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 2 گە كۆپەيتىڭ.
12x+18y=78,12x+2y=22
ئاددىيلاشتۇرۇڭ.
12x-12x+18y-2y=78-22
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 12x+18y=78 دىن 12x+2y=22 نى ئېلىڭ.
18y-2y=78-22
12x نى -12x گە قوشۇڭ. 12x بىلەن -12x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
16y=78-22
18y نى -2y گە قوشۇڭ.
16y=56
78 نى -22 گە قوشۇڭ.
y=\frac{7}{2}
ھەر ئىككى تەرەپنى 16 گە بۆلۈڭ.
6x+\frac{7}{2}=11
6x+y=11 دە \frac{7}{2} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
6x=\frac{15}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{7}{2} نى ئېلىڭ.
x=\frac{5}{4}
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x=\frac{5}{4},y=\frac{7}{2}
سىستېما ھەل قىلىندى.