ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

14x-3y=-63,7x+2y=-7
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
14x-3y=-63
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
14x=3y-63
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3y نى قوشۇڭ.
x=\frac{1}{14}\left(3y-63\right)
ھەر ئىككى تەرەپنى 14 گە بۆلۈڭ.
x=\frac{3}{14}y-\frac{9}{2}
\frac{1}{14} نى -63+3y كە كۆپەيتىڭ.
7\left(\frac{3}{14}y-\frac{9}{2}\right)+2y=-7
يەنە بىر تەڭلىمە 7x+2y=-7 دىكى x نىڭ ئورنىغا \frac{3y}{14}-\frac{9}{2} نى ئالماشتۇرۇڭ.
\frac{3}{2}y-\frac{63}{2}+2y=-7
7 نى \frac{3y}{14}-\frac{9}{2} كە كۆپەيتىڭ.
\frac{7}{2}y-\frac{63}{2}=-7
\frac{3y}{2} نى 2y گە قوشۇڭ.
\frac{7}{2}y=\frac{49}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{63}{2} نى قوشۇڭ.
y=7
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{7}{2} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{3}{14}\times 7-\frac{9}{2}
x=\frac{3}{14}y-\frac{9}{2} دە 7 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{3-9}{2}
\frac{3}{14} نى 7 كە كۆپەيتىڭ.
x=-3
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{9}{2} نى \frac{3}{2} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-3,y=7
سىستېما ھەل قىلىندى.
14x-3y=-63,7x+2y=-7
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}14&-3\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-63\\-7\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}14&-3\\7&2\end{matrix}\right))\left(\begin{matrix}14&-3\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&-3\\7&2\end{matrix}\right))\left(\begin{matrix}-63\\-7\end{matrix}\right)
\left(\begin{matrix}14&-3\\7&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&-3\\7&2\end{matrix}\right))\left(\begin{matrix}-63\\-7\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&-3\\7&2\end{matrix}\right))\left(\begin{matrix}-63\\-7\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{14\times 2-\left(-3\times 7\right)}&-\frac{-3}{14\times 2-\left(-3\times 7\right)}\\-\frac{7}{14\times 2-\left(-3\times 7\right)}&\frac{14}{14\times 2-\left(-3\times 7\right)}\end{matrix}\right)\left(\begin{matrix}-63\\-7\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{49}&\frac{3}{49}\\-\frac{1}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}-63\\-7\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{49}\left(-63\right)+\frac{3}{49}\left(-7\right)\\-\frac{1}{7}\left(-63\right)+\frac{2}{7}\left(-7\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\7\end{matrix}\right)
ھېسابلاڭ.
x=-3,y=7
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
14x-3y=-63,7x+2y=-7
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
7\times 14x+7\left(-3\right)y=7\left(-63\right),14\times 7x+14\times 2y=14\left(-7\right)
14x بىلەن 7x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 7 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 14 گە كۆپەيتىڭ.
98x-21y=-441,98x+28y=-98
ئاددىيلاشتۇرۇڭ.
98x-98x-21y-28y=-441+98
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 98x-21y=-441 دىن 98x+28y=-98 نى ئېلىڭ.
-21y-28y=-441+98
98x نى -98x گە قوشۇڭ. 98x بىلەن -98x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-49y=-441+98
-21y نى -28y گە قوشۇڭ.
-49y=-343
-441 نى 98 گە قوشۇڭ.
y=7
ھەر ئىككى تەرەپنى -49 گە بۆلۈڭ.
7x+2\times 7=-7
7x+2y=-7 دە 7 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
7x+14=-7
2 نى 7 كە كۆپەيتىڭ.
7x=-21
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 14 نى ئېلىڭ.
x=-3
ھەر ئىككى تەرەپنى 7 گە بۆلۈڭ.
x=-3,y=7
سىستېما ھەل قىلىندى.