ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

10x+5y=170,6x+10y=200
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
10x+5y=170
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
10x=-5y+170
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 5y نى ئېلىڭ.
x=\frac{1}{10}\left(-5y+170\right)
ھەر ئىككى تەرەپنى 10 گە بۆلۈڭ.
x=-\frac{1}{2}y+17
\frac{1}{10} نى -5y+170 كە كۆپەيتىڭ.
6\left(-\frac{1}{2}y+17\right)+10y=200
يەنە بىر تەڭلىمە 6x+10y=200 دىكى x نىڭ ئورنىغا -\frac{y}{2}+17 نى ئالماشتۇرۇڭ.
-3y+102+10y=200
6 نى -\frac{y}{2}+17 كە كۆپەيتىڭ.
7y+102=200
-3y نى 10y گە قوشۇڭ.
7y=98
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 102 نى ئېلىڭ.
y=14
ھەر ئىككى تەرەپنى 7 گە بۆلۈڭ.
x=-\frac{1}{2}\times 14+17
x=-\frac{1}{2}y+17 دە 14 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-7+17
-\frac{1}{2} نى 14 كە كۆپەيتىڭ.
x=10
17 نى -7 گە قوشۇڭ.
x=10,y=14
سىستېما ھەل قىلىندى.
10x+5y=170,6x+10y=200
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}10&5\\6&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}170\\200\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}10&5\\6&10\end{matrix}\right))\left(\begin{matrix}10&5\\6&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&5\\6&10\end{matrix}\right))\left(\begin{matrix}170\\200\end{matrix}\right)
\left(\begin{matrix}10&5\\6&10\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&5\\6&10\end{matrix}\right))\left(\begin{matrix}170\\200\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&5\\6&10\end{matrix}\right))\left(\begin{matrix}170\\200\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{10\times 10-5\times 6}&-\frac{5}{10\times 10-5\times 6}\\-\frac{6}{10\times 10-5\times 6}&\frac{10}{10\times 10-5\times 6}\end{matrix}\right)\left(\begin{matrix}170\\200\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{1}{14}\\-\frac{3}{35}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}170\\200\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 170-\frac{1}{14}\times 200\\-\frac{3}{35}\times 170+\frac{1}{7}\times 200\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\14\end{matrix}\right)
ھېسابلاڭ.
x=10,y=14
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
10x+5y=170,6x+10y=200
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
6\times 10x+6\times 5y=6\times 170,10\times 6x+10\times 10y=10\times 200
10x بىلەن 6x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 6 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 10 گە كۆپەيتىڭ.
60x+30y=1020,60x+100y=2000
ئاددىيلاشتۇرۇڭ.
60x-60x+30y-100y=1020-2000
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 60x+30y=1020 دىن 60x+100y=2000 نى ئېلىڭ.
30y-100y=1020-2000
60x نى -60x گە قوشۇڭ. 60x بىلەن -60x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-70y=1020-2000
30y نى -100y گە قوشۇڭ.
-70y=-980
1020 نى -2000 گە قوشۇڭ.
y=14
ھەر ئىككى تەرەپنى -70 گە بۆلۈڭ.
6x+10\times 14=200
6x+10y=200 دە 14 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
6x+140=200
10 نى 14 كە كۆپەيتىڭ.
6x=60
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 140 نى ئېلىڭ.
x=10
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x=10,y=14
سىستېما ھەل قىلىندى.