ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

0.4x+0.3y=0.7,11x-10y=1
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
0.4x+0.3y=0.7
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
0.4x=-0.3y+0.7
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{3y}{10} نى ئېلىڭ.
x=2.5\left(-0.3y+0.7\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 0.4 گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-0.75y+1.75
2.5 نى \frac{-3y+7}{10} كە كۆپەيتىڭ.
11\left(-0.75y+1.75\right)-10y=1
يەنە بىر تەڭلىمە 11x-10y=1 دىكى x نىڭ ئورنىغا \frac{-3y+7}{4} نى ئالماشتۇرۇڭ.
-8.25y+19.25-10y=1
11 نى \frac{-3y+7}{4} كە كۆپەيتىڭ.
-18.25y+19.25=1
-\frac{33y}{4} نى -10y گە قوشۇڭ.
-18.25y=-18.25
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 19.25 نى ئېلىڭ.
y=1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -18.25 گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{-3+7}{4}
x=-0.75y+1.75 دە 1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=1
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق 1.75 نى -0.75 گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=1,y=1
سىستېما ھەل قىلىندى.
0.4x+0.3y=0.7,11x-10y=1
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0.7\\1\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right))\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right))\left(\begin{matrix}0.7\\1\end{matrix}\right)
\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right))\left(\begin{matrix}0.7\\1\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right))\left(\begin{matrix}0.7\\1\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{0.4\left(-10\right)-0.3\times 11}&-\frac{0.3}{0.4\left(-10\right)-0.3\times 11}\\-\frac{11}{0.4\left(-10\right)-0.3\times 11}&\frac{0.4}{0.4\left(-10\right)-0.3\times 11}\end{matrix}\right)\left(\begin{matrix}0.7\\1\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{100}{73}&\frac{3}{73}\\\frac{110}{73}&-\frac{4}{73}\end{matrix}\right)\left(\begin{matrix}0.7\\1\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{100}{73}\times 0.7+\frac{3}{73}\\\frac{110}{73}\times 0.7-\frac{4}{73}\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
ھېسابلاڭ.
x=1,y=1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
0.4x+0.3y=0.7,11x-10y=1
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
11\times 0.4x+11\times 0.3y=11\times 0.7,0.4\times 11x+0.4\left(-10\right)y=0.4
\frac{2x}{5} بىلەن 11x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 11 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 0.4 گە كۆپەيتىڭ.
4.4x+3.3y=7.7,4.4x-4y=0.4
ئاددىيلاشتۇرۇڭ.
4.4x-4.4x+3.3y+4y=7.7-0.4
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 4.4x+3.3y=7.7 دىن 4.4x-4y=0.4 نى ئېلىڭ.
3.3y+4y=7.7-0.4
\frac{22x}{5} نى -\frac{22x}{5} گە قوشۇڭ. \frac{22x}{5} بىلەن -\frac{22x}{5} يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
7.3y=7.7-0.4
\frac{33y}{10} نى 4y گە قوشۇڭ.
7.3y=7.3
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق 7.7 نى -0.4 گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
y=1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 7.3 گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
11x-10=1
11x-10y=1 دە 1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
11x=11
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 10 نى قوشۇڭ.
x=1
ھەر ئىككى تەرەپنى 11 گە بۆلۈڭ.
x=1,y=1
سىستېما ھەل قىلىندى.