ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

-8x+4y=24,-7x+7y=28
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
-8x+4y=24
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
-8x=-4y+24
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4y نى ئېلىڭ.
x=-\frac{1}{8}\left(-4y+24\right)
ھەر ئىككى تەرەپنى -8 گە بۆلۈڭ.
x=\frac{1}{2}y-3
-\frac{1}{8} نى -4y+24 كە كۆپەيتىڭ.
-7\left(\frac{1}{2}y-3\right)+7y=28
يەنە بىر تەڭلىمە -7x+7y=28 دىكى x نىڭ ئورنىغا \frac{y}{2}-3 نى ئالماشتۇرۇڭ.
-\frac{7}{2}y+21+7y=28
-7 نى \frac{y}{2}-3 كە كۆپەيتىڭ.
\frac{7}{2}y+21=28
-\frac{7y}{2} نى 7y گە قوشۇڭ.
\frac{7}{2}y=7
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 21 نى ئېلىڭ.
y=2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{7}{2} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{1}{2}\times 2-3
x=\frac{1}{2}y-3 دە 2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=1-3
\frac{1}{2} نى 2 كە كۆپەيتىڭ.
x=-2
-3 نى 1 گە قوشۇڭ.
x=-2,y=2
سىستېما ھەل قىلىندى.
-8x+4y=24,-7x+7y=28
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\28\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right))\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right))\left(\begin{matrix}24\\28\end{matrix}\right)
\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right))\left(\begin{matrix}24\\28\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&4\\-7&7\end{matrix}\right))\left(\begin{matrix}24\\28\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{-8\times 7-4\left(-7\right)}&-\frac{4}{-8\times 7-4\left(-7\right)}\\-\frac{-7}{-8\times 7-4\left(-7\right)}&-\frac{8}{-8\times 7-4\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}24\\28\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{7}\\-\frac{1}{4}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}24\\28\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 24+\frac{1}{7}\times 28\\-\frac{1}{4}\times 24+\frac{2}{7}\times 28\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
ھېسابلاڭ.
x=-2,y=2
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
-8x+4y=24,-7x+7y=28
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-7\left(-8\right)x-7\times 4y=-7\times 24,-8\left(-7\right)x-8\times 7y=-8\times 28
-8x بىلەن -7x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -7 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى -8 گە كۆپەيتىڭ.
56x-28y=-168,56x-56y=-224
ئاددىيلاشتۇرۇڭ.
56x-56x-28y+56y=-168+224
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 56x-28y=-168 دىن 56x-56y=-224 نى ئېلىڭ.
-28y+56y=-168+224
56x نى -56x گە قوشۇڭ. 56x بىلەن -56x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
28y=-168+224
-28y نى 56y گە قوشۇڭ.
28y=56
-168 نى 224 گە قوشۇڭ.
y=2
ھەر ئىككى تەرەپنى 28 گە بۆلۈڭ.
-7x+7\times 2=28
-7x+7y=28 دە 2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-7x+14=28
7 نى 2 كە كۆپەيتىڭ.
-7x=14
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 14 نى ئېلىڭ.
x=-2
ھەر ئىككى تەرەپنى -7 گە بۆلۈڭ.
x=-2,y=2
سىستېما ھەل قىلىندى.