\left\{ \begin{array} { l } { - 10 x - 3 y = 9 } \\ { - 5 x + 5 y = - 2 } \end{array} \right.
x، y نى يېشىش
x=-\frac{3}{5}=-0.6
y=-1
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
-10x-3y=9,-5x+5y=-2
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
-10x-3y=9
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
-10x=3y+9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3y نى قوشۇڭ.
x=-\frac{1}{10}\left(3y+9\right)
ھەر ئىككى تەرەپنى -10 گە بۆلۈڭ.
x=-\frac{3}{10}y-\frac{9}{10}
-\frac{1}{10} نى 9+3y كە كۆپەيتىڭ.
-5\left(-\frac{3}{10}y-\frac{9}{10}\right)+5y=-2
يەنە بىر تەڭلىمە -5x+5y=-2 دىكى x نىڭ ئورنىغا \frac{-3y-9}{10} نى ئالماشتۇرۇڭ.
\frac{3}{2}y+\frac{9}{2}+5y=-2
-5 نى \frac{-3y-9}{10} كە كۆپەيتىڭ.
\frac{13}{2}y+\frac{9}{2}=-2
\frac{3y}{2} نى 5y گە قوشۇڭ.
\frac{13}{2}y=-\frac{13}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{9}{2} نى ئېلىڭ.
y=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{13}{2} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{3}{10}\left(-1\right)-\frac{9}{10}
x=-\frac{3}{10}y-\frac{9}{10} دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{3-9}{10}
-\frac{3}{10} نى -1 كە كۆپەيتىڭ.
x=-\frac{3}{5}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{9}{10} نى \frac{3}{10} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-\frac{3}{5},y=-1
سىستېما ھەل قىلىندى.
-10x-3y=9,-5x+5y=-2
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-2\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}9\\-2\end{matrix}\right)
\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}9\\-2\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}9\\-2\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{-10\times 5-\left(-3\left(-5\right)\right)}&-\frac{-3}{-10\times 5-\left(-3\left(-5\right)\right)}\\-\frac{-5}{-10\times 5-\left(-3\left(-5\right)\right)}&-\frac{10}{-10\times 5-\left(-3\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}9\\-2\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}&-\frac{3}{65}\\-\frac{1}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}9\\-2\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}\times 9-\frac{3}{65}\left(-2\right)\\-\frac{1}{13}\times 9+\frac{2}{13}\left(-2\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\\-1\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{3}{5},y=-1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
-10x-3y=9,-5x+5y=-2
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-5\left(-10\right)x-5\left(-3\right)y=-5\times 9,-10\left(-5\right)x-10\times 5y=-10\left(-2\right)
-10x بىلەن -5x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -5 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى -10 گە كۆپەيتىڭ.
50x+15y=-45,50x-50y=20
ئاددىيلاشتۇرۇڭ.
50x-50x+15y+50y=-45-20
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 50x+15y=-45 دىن 50x-50y=20 نى ئېلىڭ.
15y+50y=-45-20
50x نى -50x گە قوشۇڭ. 50x بىلەن -50x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
65y=-45-20
15y نى 50y گە قوشۇڭ.
65y=-65
-45 نى -20 گە قوشۇڭ.
y=-1
ھەر ئىككى تەرەپنى 65 گە بۆلۈڭ.
-5x+5\left(-1\right)=-2
-5x+5y=-2 دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-5x-5=-2
5 نى -1 كە كۆپەيتىڭ.
-5x=3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 5 نى قوشۇڭ.
x=-\frac{3}{5}
ھەر ئىككى تەرەپنى -5 گە بۆلۈڭ.
x=-\frac{3}{5},y=-1
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}