ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2x-5+3y-4=-1
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 3 گە كۆپەيتىڭ.
2x-9+3y=-1
-5 دىن 4 نى ئېلىپ -9 نى چىقىرىڭ.
2x+3y=-1+9
9 نى ھەر ئىككى تەرەپكە قوشۇڭ.
2x+3y=8
-1 گە 9 نى قوشۇپ 8 نى چىقىرىڭ.
y-x=5
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
2x+3y=8,-x+y=5
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
2x+3y=8
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
2x=-3y+8
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3y نى ئېلىڭ.
x=\frac{1}{2}\left(-3y+8\right)
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=-\frac{3}{2}y+4
\frac{1}{2} نى -3y+8 كە كۆپەيتىڭ.
-\left(-\frac{3}{2}y+4\right)+y=5
يەنە بىر تەڭلىمە -x+y=5 دىكى x نىڭ ئورنىغا -\frac{3y}{2}+4 نى ئالماشتۇرۇڭ.
\frac{3}{2}y-4+y=5
-1 نى -\frac{3y}{2}+4 كە كۆپەيتىڭ.
\frac{5}{2}y-4=5
\frac{3y}{2} نى y گە قوشۇڭ.
\frac{5}{2}y=9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 4 نى قوشۇڭ.
y=\frac{18}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{5}{2} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{3}{2}\times \frac{18}{5}+4
x=-\frac{3}{2}y+4 دە \frac{18}{5} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{27}{5}+4
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{3}{2} نى \frac{18}{5} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=-\frac{7}{5}
4 نى -\frac{27}{5} گە قوشۇڭ.
x=-\frac{7}{5},y=\frac{18}{5}
سىستېما ھەل قىلىندى.
2x-5+3y-4=-1
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 3 گە كۆپەيتىڭ.
2x-9+3y=-1
-5 دىن 4 نى ئېلىپ -9 نى چىقىرىڭ.
2x+3y=-1+9
9 نى ھەر ئىككى تەرەپكە قوشۇڭ.
2x+3y=8
-1 گە 9 نى قوشۇپ 8 نى چىقىرىڭ.
y-x=5
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
2x+3y=8,-x+y=5
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}2&3\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\5\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}2&3\\-1&1\end{matrix}\right))\left(\begin{matrix}2&3\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-1&1\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
\left(\begin{matrix}2&3\\-1&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-1&1\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-1&1\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\left(-1\right)}&-\frac{3}{2-3\left(-1\right)}\\-\frac{-1}{2-3\left(-1\right)}&\frac{2}{2-3\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}8\\5\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&-\frac{3}{5}\\\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}8\\5\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 8-\frac{3}{5}\times 5\\\frac{1}{5}\times 8+\frac{2}{5}\times 5\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{5}\\\frac{18}{5}\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{7}{5},y=\frac{18}{5}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
2x-5+3y-4=-1
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 3 گە كۆپەيتىڭ.
2x-9+3y=-1
-5 دىن 4 نى ئېلىپ -9 نى چىقىرىڭ.
2x+3y=-1+9
9 نى ھەر ئىككى تەرەپكە قوشۇڭ.
2x+3y=8
-1 گە 9 نى قوشۇپ 8 نى چىقىرىڭ.
y-x=5
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
2x+3y=8,-x+y=5
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-2x-3y=-8,2\left(-1\right)x+2y=2\times 5
2x بىلەن -x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -1 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 2 گە كۆپەيتىڭ.
-2x-3y=-8,-2x+2y=10
ئاددىيلاشتۇرۇڭ.
-2x+2x-3y-2y=-8-10
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -2x-3y=-8 دىن -2x+2y=10 نى ئېلىڭ.
-3y-2y=-8-10
-2x نى 2x گە قوشۇڭ. -2x بىلەن 2x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-5y=-8-10
-3y نى -2y گە قوشۇڭ.
-5y=-18
-8 نى -10 گە قوشۇڭ.
y=\frac{18}{5}
ھەر ئىككى تەرەپنى -5 گە بۆلۈڭ.
-x+\frac{18}{5}=5
-x+y=5 دە \frac{18}{5} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-x=\frac{7}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{18}{5} نى ئېلىڭ.
x=-\frac{7}{5}
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
x=-\frac{7}{5},y=\frac{18}{5}
سىستېما ھەل قىلىندى.