\left\{ \begin{array} { c } { y = 2 - 2 x } \\ { 5 y + 2 x = 14 } \end{array} \right.
y، x نى يېشىش
x=-\frac{1}{2}=-0.5
y=3
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
y+2x=2
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y+2x=2,5y+2x=14
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
y+2x=2
تەڭلىمىدىن بىرنى تالاپ، y نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق y نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
y=-2x+2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2x نى ئېلىڭ.
5\left(-2x+2\right)+2x=14
يەنە بىر تەڭلىمە 5y+2x=14 دىكى y نىڭ ئورنىغا -2x+2 نى ئالماشتۇرۇڭ.
-10x+10+2x=14
5 نى -2x+2 كە كۆپەيتىڭ.
-8x+10=14
-10x نى 2x گە قوشۇڭ.
-8x=4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 10 نى ئېلىڭ.
x=-\frac{1}{2}
ھەر ئىككى تەرەپنى -8 گە بۆلۈڭ.
y=-2\left(-\frac{1}{2}\right)+2
y=-2x+2 دە -\frac{1}{2} نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=1+2
-2 نى -\frac{1}{2} كە كۆپەيتىڭ.
y=3
2 نى 1 گە قوشۇڭ.
y=3,x=-\frac{1}{2}
سىستېما ھەل قىلىندى.
y+2x=2
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y+2x=2,5y+2x=14
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&2\\5&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\14\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}1&2\\5&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}2\\14\end{matrix}\right)
\left(\begin{matrix}1&2\\5&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}2\\14\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}2\\14\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-2\times 5}&-\frac{2}{2-2\times 5}\\-\frac{5}{2-2\times 5}&\frac{1}{2-2\times 5}\end{matrix}\right)\left(\begin{matrix}2\\14\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{5}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}2\\14\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 2+\frac{1}{4}\times 14\\\frac{5}{8}\times 2-\frac{1}{8}\times 14\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\-\frac{1}{2}\end{matrix}\right)
ھېسابلاڭ.
y=3,x=-\frac{1}{2}
ماترىتسا ئېلېمېنتلىرى y ۋە x نى يېيىڭ.
y+2x=2
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y+2x=2,5y+2x=14
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
y-5y+2x-2x=2-14
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق y+2x=2 دىن 5y+2x=14 نى ئېلىڭ.
y-5y=2-14
2x نى -2x گە قوشۇڭ. 2x بىلەن -2x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-4y=2-14
y نى -5y گە قوشۇڭ.
-4y=-12
2 نى -14 گە قوشۇڭ.
y=3
ھەر ئىككى تەرەپنى -4 گە بۆلۈڭ.
5\times 3+2x=14
5y+2x=14 دە 3 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
15+2x=14
5 نى 3 كە كۆپەيتىڭ.
2x=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 15 نى ئېلىڭ.
x=-\frac{1}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
y=3,x=-\frac{1}{2}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}