ھېسابلاش
\frac{17024}{9}\approx 1891.555555556
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\int _{0}^{8}-133x^{2}\left(-\frac{1}{12}\right)\mathrm{d}x
x گە x نى كۆپەيتىپ x^{2} نى چىقىرىڭ.
\int _{0}^{8}\frac{-133\left(-1\right)}{12}x^{2}\mathrm{d}x
-133\left(-\frac{1}{12}\right) نى يەككە ئاددىي كەسىر شەكلىدە ئىپادىلەڭ.
\int _{0}^{8}\frac{133}{12}x^{2}\mathrm{d}x
-133 گە -1 نى كۆپەيتىپ 133 نى چىقىرىڭ.
\int \frac{133x^{2}}{12}\mathrm{d}x
ۋۋال ئېنىقسىز ئىنتېگرالنى ھېسابلاڭ.
\frac{133\int x^{2}\mathrm{d}x}{12}
\int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x ئارقىلىق كونستانتنى فاكتورلىرىغا ئايرىڭ.
\frac{133x^{3}}{36}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{2}\mathrm{d}x نى \frac{x^{3}}{3} بىلەن ئالماشتۇرۇڭ.
\frac{133}{36}\times 8^{3}-\frac{133}{36}\times 0^{3}
ئېنىق ئىنتېگرال بولسا ئىنتېگراسىيەنىڭ ئۈست لىمىتىدە ھېسابلانغان ئىپادىنىڭ ئېنىقسىز ئىنتېگرالىدىن ئىنتېگراسىيەنىڭ تۆۋەن لىمىتىدە ھېسابلانغان ئېنىقسىز ئىنتېگرالنى ئېلىش بىلەن ھېسابلىنىدۇ.
\frac{17024}{9}
ئاددىيلاشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}