ھېسابلاش
-\frac{752}{75}\approx -10.026666667
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\int _{0}^{4}-0.88x-0.44x^{2}+0.8+0.4x\mathrm{d}x
4.4x-4 نىڭ ھەر بىر شەرتىنى -0.2-0.1x نىڭ شەرتلىرىگە كۆپەيتىپ، تارقىتىش خاسلىقى قوللىنىڭ.
\int _{0}^{4}-0.48x-0.44x^{2}+0.8\mathrm{d}x
-0.88x بىلەن 0.4x نى بىرىكتۈرۈپ -0.48x نى چىقىرىڭ.
\int -\frac{12x}{25}-\frac{11x^{2}}{25}+0.8\mathrm{d}x
ۋۋال ئېنىقسىز ئىنتېگرالنى ھېسابلاڭ.
\int -\frac{12x}{25}\mathrm{d}x+\int -\frac{11x^{2}}{25}\mathrm{d}x+\int 0.8\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
-\frac{12\int x\mathrm{d}x}{25}-\frac{11\int x^{2}\mathrm{d}x}{25}+\int 0.8\mathrm{d}x
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
-\frac{6x^{2}}{25}-\frac{11\int x^{2}\mathrm{d}x}{25}+\int 0.8\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x\mathrm{d}x نى \frac{x^{2}}{2} بىلەن ئالماشتۇرۇڭ. -0.48 نى \frac{x^{2}}{2} كە كۆپەيتىڭ.
-\frac{6x^{2}}{25}-\frac{11x^{3}}{75}+\int 0.8\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ئۈچۈن بولغاچقا، \int x^{2}\mathrm{d}x نى \frac{x^{3}}{3} بىلەن ئالماشتۇرۇڭ. -0.44 نى \frac{x^{3}}{3} كە كۆپەيتىڭ.
-\frac{6x^{2}}{25}-\frac{11x^{3}}{75}+\frac{4x}{5}
ئادەتتىكى ئىنتېگراللار قائىدىسى \int a\mathrm{d}x=ax جەدۋىلى ئارقىلىق 0.8 نىڭ ئىنتېگرالىنى تېپىڭ.
-\frac{6}{25}\times 4^{2}-\frac{11}{75}\times 4^{3}+0.8\times 4-\left(-\frac{6}{25}\times 0^{2}-\frac{11}{75}\times 0^{3}+0.8\times 0\right)
ئېنىق ئىنتېگرال بولسا ئىنتېگراسىيەنىڭ ئۈست لىمىتىدە ھېسابلانغان ئىپادىنىڭ ئېنىقسىز ئىنتېگرالىدىن ئىنتېگراسىيەنىڭ تۆۋەن لىمىتىدە ھېسابلانغان ئېنىقسىز ئىنتېگرالنى ئېلىش بىلەن ھېسابلىنىدۇ.
-\frac{752}{75}
ئاددىيلاشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}