ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\int _{0}^{1}1-2\sqrt{x}+\left(\sqrt{x}\right)^{2}\mathrm{d}x
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(1-\sqrt{x}\right)^{2} نى يېيىڭ.
\int _{0}^{1}1-2\sqrt{x}+x\mathrm{d}x
\sqrt{x} نىڭ 2-دەرىجىسىنى ھېسابلاپ x نى چىقىرىڭ.
\int 1-2\sqrt{x}+x\mathrm{d}x
ۋۋال ئېنىقسىز ئىنتېگرالنى ھېسابلاڭ.
\int 1\mathrm{d}x+\int -2\sqrt{x}\mathrm{d}x+\int x\mathrm{d}x
يىغىندى شەرتىنى شەرت بىلەن پۈتۈنلەشتۈرۈش
\int 1\mathrm{d}x-2\int \sqrt{x}\mathrm{d}x+\int x\mathrm{d}x
شەرتلەرنىڭ ھەربىرىدىكى كونستانتنى فاكتورلىرىغا ئايرىڭ.
x-2\int \sqrt{x}\mathrm{d}x+\int x\mathrm{d}x
ئادەتتىكى ئىنتېگراللار قائىدىسى ⁦\int a\mathrm{d}x=ax⁩ جەدۋىلى ئارقىلىق ⁦1⁩ نىڭ ئىنتېگرالىنى تېپىڭ.
x-\frac{4x^{\frac{3}{2}}}{3}+\int x\mathrm{d}x
\sqrt{x} نى x^{\frac{1}{2}} شەكلىدە قايتا يېزىڭ. ⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x^{\frac{1}{2}}\mathrm{d}x⁩ نى ⁦\frac{x^{\frac{3}{2}}}{\frac{3}{2}}⁩ بىلەن ئالماشتۇرۇڭ. ئاددىيلاشتۇرۇڭ. -2 نى \frac{2x^{\frac{3}{2}}}{3} كە كۆپەيتىڭ.
x-\frac{4x^{\frac{3}{2}}}{3}+\frac{x^{2}}{2}
⁦\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}⁩ ⁦k\neq -1⁩ ئۈچۈن بولغاچقا، ⁦\int x\mathrm{d}x⁩ نى ⁦\frac{x^{2}}{2}⁩ بىلەن ئالماشتۇرۇڭ.
\frac{x^{2}}{2}-\frac{4x^{\frac{3}{2}}}{3}+x
ئاددىيلاشتۇرۇڭ.
\frac{1^{2}}{2}-\frac{4}{3}\times 1^{\frac{3}{2}}+1-\left(\frac{0^{2}}{2}-\frac{4}{3}\times 0^{\frac{3}{2}}+0\right)
ئېنىق ئىنتېگرال بولسا ئىنتېگراسىيەنىڭ ئۈست لىمىتىدە ھېسابلانغان ئىپادىنىڭ ئېنىقسىز ئىنتېگرالىدىن ئىنتېگراسىيەنىڭ تۆۋەن لىمىتىدە ھېسابلانغان ئېنىقسىز ئىنتېگرالنى ئېلىش بىلەن ھېسابلىنىدۇ.
\frac{1}{6}
ئاددىيلاشتۇرۇڭ.